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Abstract— Remote photoplethysmography (rPPG) measures
cardiac signals remotely from facial videos, leading to promising
applications in telemedicine, face anti-spoofing, emotion anal-
ysis, etc. However, recent supervised approaches are limited
by data scarcity and current self-supervised rPPG methods
struggle to learn physiological features from data recorded
in challenging scenarios, which contain overwhelming en-
vironmental noise caused by head movements, illumination
variations, and recording device changes. We propose a novel
contrastive framework that leverages a large set of priors, that
enable learning robust and transferable features even from
challenging datasets. Ours is the first method to focus on self-
supervised learning on challenging data and the first method
to use such a large set of priors. The priors include a novel
traditional augmentation method, leveraging spatial-temporal
maps and self-attention based transformer for SSL. We show
that it outperforms current self-supervised methods on four
public datasets, especially on the more challenging data where
it reaches close to supervised performance. Our code is available
at: https://github.com/marukosan93/RS-rPPG

I. INTRODUCTION

Heart rate (HR), heart rate variation (HRV), respiratory
rate and oxygen saturation are important healthcare parame-
ters and emotional cues, since they change accordingly with
our well-being and emotional states. Remote photoplethys-
mography (rPPG) can obtain a signal akin to blood volume
pulse (BVP) [5] without any contact, by using ordinary RGB
cameras. The rPPG signal is obtained from subtle pixel
color variations present in RGB facial videos, relying on
the same optical principles as contact photoplethysmogra-
phy. However, the rPPG signal-to-noise ratio is poor, as
the physiological signal has low power when compared to
environmental noise that is also captured (caused by head
movement, illumination variations, sensor differences, etc.),
making robust rPPG very challenging. Early methods relied
on hand-crafted features or blind source separation [43],
[34], [18], [9], [10], [45], but due to their lack of robustness
in scenarios with variable lighting and movement they were
surpassed by deep learning approaches. Most deep learning
methods employed supervised learning via Convolutional
Neural Network (CNN) based models[6], [38], [49], [50],
[29], [30], [24], [8] or more recently, self-attention based
transformer architectures [22], [35], [51], [15], [36].

Insufficient labeled data is a significant problem in rPPG,
as data collection is costly, requires medical devices and
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presents privacy concerns. Supervised methods lack robust-
ness and generalization capabilities when trained on small
datasets with specific noise distributions (from lighting,
movement, devices). Solutions to lack of annotated data have
been attempted such as data augmentation [31], [48], [41],
[17], [1], synthetic data [27], [25], [26] and self-supervised
learning (SSL) methods. For generating positive and negative
learning samples, several SSL methods exploit intra-data
differences in facial videos by utilising spatial-frequency
augmentation [13], [47], [52], spatial-temporal augmentation
[44], [16] or within video spatial similarity [3]. However,
artificial augmentations can introduce additional bias and
ignore inter-data information. Leveraging inter-data differ-
ences via instance-wise sampling [40], [2] or non-contrastive
learning [37] has also proven effective in learning without
annotated labels. Nonetheless, there is still a notable gap
between self-supervised and the state-of-the-art supervised
methods. Moreover, the aforementioned works have been
evaluated with controlled environment rPPG datasets (stable
illumination and minimal subject movement), and have not
proven to be robust to more challenging data. These end-
to-end methods all deal with direct input video data, that
is polluted with non-physiological noise and propose weak
constraints, that cannot hold up in challenging scenarios. For
example, Contrast-Phys [40] and SiNC [37] rely on inter-
data differences being caused by physiological factors, as
different samples likely contain different HR. However, in
less uniform and controlled videos, different samples also
contain different noise signals that are more pronounced than
physiological signals. Thus, focusing only on the inter-data
difference on challenging data can lead to learning non-
physiological noise present in the data. Furthermore, SSL is
unfeasible on a large scale if it can only reliably train from
controlled data, as only a small subset of available data can
be used, leaving the data scarcity issue unresolved.

In this work, we propose RS-rPPG, a novel contrastive
self-supervision framework that is robust to environmental
noise, making it applicable to challenging data. RS-rPPG
is the first self-supervised method to focus on challenging
data and the first to leverage an exhaustive set of seven
priors derived from observations about rPPG. The afore-
mentioned priors, most notably include, a novel traditional
map augmentation method for learning physiology specific
features, leveraging spatial-temporal maps for more robust
SSL, and exploiting self-attention based transformer for
better temporal modelling. Our method is shown to outper-
form previous SSL works on four datasets containing both
controlled (PURE [39], OBF [19]) and challenging facial
videos (MMSE-HR [53], VIPL-HR [28]). We perform ex-
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tensive intra-dataset, cross/mixed-dataset, demographics and
segment length validations, which show that RS-rPPG can
learn reliable features from both controlled and challenging
data.

II. RELATED WORKS

An early study proved the feasibility of measuring rPPG
from facial videos by extracting a coarse physiological
signal by averaging pixels from the green channel of a
physiologically significant facial region [43]. It was followed
by numerous traditional methods that relied on handcrafted
features and did not need datasets for training. They ei-
ther relied on optical/physiological considerations expressed
through mathematical models like CHROM [9], POS [45],
PBV [10], LGI [33] or common blind source separation
approaches such as ICA [34] and PCA [18]. These traditional
methods were built on assumptions that may not hold in
less constrained environments and were surpassed by deep
learning methods, for example, CHROM [9] assumes a stan-
dardized skin color profile, ICA [34] assumes independence
of source signals and PCA [18] assumes their uncorrela-
tion. Among the first deep learning methods were 2DCNN
models that extracted the HR from two adiacent frames,
such as HR-CNN [38] and DeepPhys [6], that only take
spatial information into account. MTTS-CAN [21] extends
the DeepPhys architecture by allowing temporal information
to be extracted not only from adiacent frames. To overcome
the deficiency of temporal information of 2D-CNN methods,
as temporal information is crucial for accurate estimation of
the quasi-periodical rPPG signal, 3D-CNN were proposed.
End-to-end spatial-temporal 3D-CNN models have been used
to exploit the temporal information such as PhysNet [49],
rPPGNet [50] and Deep-rPPG [20]. The aforementioned
methods input a whole facial video block into a 3D-CNN
network and extract a temporal signal. Another way to
exploit temporal context that can suppress the information
that is unrelated to the rPPG signal is computing spatial-
temporal maps as input, which act a more compact interme-
diate representation comprised of coarse signals obtained via
averaging. Methods that exploit spatial-temporal maps have
shown to have a higher degree of robustness to environmental
noise, like RhythmNet [29], CVD [30], Dual-GAN [24]
and BVPNet [8]. Due to the success of self-attention based
Transformer architectures such as ViT [12] and Swin [23],
rPPG methods relying on transformers have been showing
promising improvements. Transformer methods such as RA-
DIANT [15], [35] and PhySU-Net [36] are composed of
two stages, where intermediary signal embeddings are first
obtained and passed to transformer layers to learn global
context. EfficientPhys [22] and Physformer [51], on the other
hand, use transformer blocks throughout the whole model
architecture.

An open challenge in rPPG is the lack of data, as super-
vised methods tend to not generalise well to samples dissimi-
lar to the training distribution, and varied rPPG data is costly
to obtain. To mitigate this issue, other than classic computer-
vision augmentation strategies, there have also been efforts

to create rPPG specific augmentations. Spatial-temporal aug-
mentations have also been proposed [31], [48] to extend
the training set with extra samples containing extremely
small or large HR values, by temporally up-sampling and
down-sampling videos to achieve this. Augmenting datasets
with synthetic videos generated from real data via video-
to-video networks was proposed in [41], RErPPGNet [17]
and [1]. Particularly, in [1] unwanted bias toward different
demographic groups is addressed by augmenting the data
with generated darker skinned subjects, as datasets compiled
in western academia mostly contain lighter skinned subjects.
Another approach is training completely on synthetic data.
In [27] the authors construct a dataset of synthetic spatial-
temporal maps. Synthetic avatars have also been proposed in
[25], where synthetic videos with underlying physiological
signals are generated. A large-scale dataset, SCAMPS [26],
containing synthetic videos from with diverse subjects and
scenarios has been proposed. However, currently synthetic
data cannot perfectly imitate real conditions and complex
environmental noise. In contrast to the limited amount of
labeled rPPG data, facial videos without physiological labels
are bountiful.

To overcome data scarcity by leveraging the wast amount
of unlabeled real facial video data available, self-supervised
learning methods are studied for rPPG. SSL methods can
exploit intra-data information from each video sample, for
example by utilising spatial and temporal augmentations to
produce samples for contrastive learning. In [13], the authors
employ a frequency saliency sampler module to generate
new negative samples with artificially altered heart rate.
SLF-RPM [44] utilises a sparsity based temporal augmenta-
tion combined with a landmark based spatial augmentation
for negative samples generation. Self-rPPG [16] adopts an
approach where negatives are generated by repeating and
shuffling frames from the original videos. Simper [47] pro-
poses both periodicity-invariant (crop, resize, reverse, shift)
and periodicity-variant (frequency based) augmentations to
learn periodic information. ALPINE [3] learns by using
the similarity between temporal signals from multiple face
regions. In [52] spatial augmentation and learnable frequency
augmentations are applied, followed by an aggregation mod-
ule. Nonetheless, spatial-temporal and frequency artificial
augmentations of the data can potentially induce bias into
the trained models, and in the aforementioned works inter-
data variation is ignored.

Another way to generate training pairs is by using the
rich inter-data information present in different video samples.
Contrast-Phys [40] employs a 3D-CNN to extract signals that
and spatial-temporal instance-wise sampling to learn from
inter-data differences from different videos. SimPPG [2]
also utilises encoded signals from same video for positive
and from different videos for negative sampling. SiNC [37]
is a non-contrastive method that does not explicitly define
negative pairs, but encourages diverse power spectra over
batches of different samples to exploit inter-data differ-
ences. Current SSL methods utilise weak self-supervision
constraints that may not hold with more challenging data



(variable illumination and subject movement). Consequently,
they struggle to learn robust features from less controlled
data, that is why more robust constraints are necessary to
learn physiological features on challenging data.

III. METHOD

Our framework relies on a large set of priors (P#). We will
first introduce the motivations followed by their incorpora-
tion in our framework. We consider the following concepts,
motivated by previous works and observations about rPPG:

• P1) Spatial-temporal maps are less subject to noise. This
stems from the success of many non-end-to-end meth-
ods [32], [29], [24], [8] and traditional methods [43],
[9], [45] that proved averaging pixels from regions-
of-interest (ROI) can suppress non-physiological noise.
Therefore SSL from spatial-temporal maps is less likely
to learn physiologically irrelevant noise.

• P2) Self-attention based transformers can lead to better
temporal modelling, as shown in [22], [35], [51],
[15] where the improved long-range spatial-temporal
perception from transformers is exploited.

• P3) Signals extracted using traditional methods con-
tain more physiological information than raw aver-
aged signals. Traditional methods such as CHROM [9],
GREEN [43], POS [45] are motivated by physiological
considerations and provide outputs that are closer to the
underlying physiological signals compared to the raw
averaged signals.

• P4) Different facial videos most likely contain different
rPPG signals, making inter-data differences rich in in-
formation [40], [2], [37]. The frequency characteristics
of different input videos will most likely have a different
HR peak and spectrum, as they are influenced by
many factors that have high variability e.g. subject’s
resting heart rate, emotional state, respiration, etc. It is
highly unlikely to obtain the exact same spectrum from
different recordings, even in case where the average HR
is similar the rest of the spectrum will not be the exact
same.

• P5) Due to the spatial redundancy of the imaging sensor,
that captures several skin regions, coarse signals ob-
tained from different spatial regions and channels repre-
sent the same underlying rPPG signal [46], [3]. Different
skin areas on the face are all similarly affected by the
cardiac cycle and should results in highly correlated
signals. Moreover, the imaging sensor captures multiple
channels, that sample the same optical phenomena at
different light wavelengths. Therefore, there are both
spatial and channel redundancy present in the facial
video data.

• P6) The rPPG signal is band limited [0.5,3]Hz corre-
sponding to 30 to 180 heart beats per minute, covering
the range of normal heart rates. Frequency components
that are outside of this range correspond to external
noise caused by environmental factors such as illumi-
nation and motion.

• P7) The spectrum of rPPG signals is sparse, containing
one strong peak at the HR frequency due to the heart’s
strong periodicity. Focusing on strongly periodic signals
with a sparse spectrum can help SSL methods filter out
non-physiological noise.

A. Input map generation (P1, P3)

Due to their capability to exclude non-physiological noise
we utilize MSTmaps [30] as input (P1), calculated by aver-
aging pixels from ROIs on the face, we follow the procedure
from [30]. Firstly, to extract landmarks we utilise PyFeat[7]
with RetinaFace [11] model for face detection and PFLD[14]
model for landmark localisation, the landmarks are then sta-
bilised with a 5-point moving average filter. Six informative
ROIs are defined within the face (forehead, mouth, upper
left cheek, lower left cheek, upper right cheek, lower right
cheek), that are joined in R = 26 − 1 ROI combinations,
thus merging global and local information. For each ROI
combination R and color channel C a temporal sequence is
obtained by averaging the pixels for the whole video. Each of
the C ∗R sequences is then bandpass filtered at [0.5,3]Hz to
reduce interference of non-physiological signal components
and is min-max normalised, the R dimension is resized from
63 to 64 for computational ease.

Secondly, as augmentation is one of the most important
aspects in contrastive SSL, we propose a novel augmentation
method. As part of the positive sampling, instead of applying
a classic image processing transformation to slightly alter the
input (while keeping the a similar distribution) we choose
to apply a new transformation with physiological signif-
icance. We calculate an augmented spatial-temporal map
that we name Tmap, by computing signals with traditional
methods. We apply CHROM [9], GREEN [43], POS [45]
on the MSTmaps (along the R dimension) and concatenate
the resulting signal maps along the channel dimension to
form the Tmaps, in which each channel corresponds to
the traditional method used for calculating the signals. By
using Tmaps as augmentation, we encourage the network to
learn similarities between the coarse averaged inputs and the
more physiologically relevant traditional signals (P3). The
MSTmap and Tmap generation procedure is illustrated in
Fig. 1.

B. Contrastive learning (P3, P4, P5)

To learn from the data itself, without utilising any la-
bels, we exploit both intra-data and inter-data relationships.
To fully leverage the underlying physiological information
present in each sample we rely on (P3) to learn similarities
between coarse signals and traditionally augmented signals,
and enforce ROI and channel consistency (P5) to find com-
mon patterns between signals sampled at different spatial
locations and channels. Firstly, a mini-batch of MSTmaps
X [b,c,r, t] (with b, c, r, t being the dimensions corresponding
to batch, channel, ROI and time) is fed into the model F ,
generating the Anchor A = F(X). Secondly, we input the
augmented Tmaps X ′[b,c,r, t] into F and generate F(X ′)
that will be used to create the Positives P and Negatives N.



Fig. 1. Input map generation: a) ROIs are defined for each frame b) C×R temporal sequences are extracted by averaging pixels for each channel and
ROI combination. c) GREEN, CHROM, POS are applied on the signals and results in C = 3 signal maps of (1,R,T ), that are concatenated to form the
Tmap (C,R,T ) d) The sequences are filtered with a pass band of [0.5,3]Hz and min-max normalized to form the MSTmap or Tmap.

Fig. 2. Overview: A mini-batch of the input X (P1) and its traditional augmentation X ′ (P3) are fed into F (P2) . For our frequency triplet loss learning
F(X) is the anchor, the positive (P5) is generated by shuffling F(X ′) along the ROI and channel dimensions and the negative (P4) by shuffling F(X ′)
along the batch dimension. F(X ′) and F(X) are regularized to have limited bandwidth and low normalized spectral power with Regbw (P6) and Regsp (P7).

Each T length row of the MSTmap contains a coarse signal
obtained by averaging a certain channel and ROI, since each
of these should contain the same underlying rPPG signal
we shuffle F(X ′) along the channel and ROI dimensions
using rnd (a simple operation that returns random indices
that are in different positions than the originals), obtain-
ing P = F(X ′[b,rnd,rnd, t]). We encourage the model to
learn similarities between differently positioned (ROI and
C) coarse rows (P5), and similarities between the MSTmaps
and Tmaps (P3). With this implementation we effectively
confront a large set of signals that all measure the same rPPG
signal, but that are either sampled or processed differently.

To learn from the ample information present in inter-
data relationships we exploit instance discrimination (P4).
We implement the negative sampling (P4) similarly to the
positive. Again, we use the augmented output F(X ′) and
simply shuffle it along the batch dimension using rnd, ob-
taining N = F(X ′[rnd,c,r, t]). In this manner, we encourage
the model to push apart augmented signals that come from
different videos, as they likely correspond to rPPG signals
with dissimilar spectra.

To enforce (P3, P4, P5) we design the contrastive fre-
quency based triplet loss f T . For any spatial-temporal map
X(r, t,c) containing R×C temporal signals xr,c(t) of length
T , we define x̄r,c( f ) as the power-spectral-density (PSD)
of xr,c(t). We define a frequency triplets loss f T as in
(1), with fmin = 0.5Hz and fmax = 3Hz being the band
limit for rPPG signals (P6). Practically, within the relevant
frequency band, the loss f T guides F to bring the spectra of
positively samples output signals closer to the anchor, and
to increase the distance with the negative sample’s spectra.
The margin m ensures non-negativity of f T and defines a
minimum acceptable distance between the anchor-positive
and the anchor-negative pair, providing stable convergence
as the distance cannot increase indefinitely.

f T = max(m+
fmax

∑
f= fmin

||ār,c( f )−p̄r,c( f )||1−||ār,c( f )−n̄r,c( f )||1
fmax− fmin

, 0)

(1)

C. Network, regularisation and sampling (P2,P3,P6,P7)

Inspired by BVPNet [8], we formulate the learning prob-
lem as a spatial-temporal map prediction, where F recon-



Fig. 3. a) The network F is initialised by pre-training it to predict Tmaps from MSTmaps via the frequency based loss L f (P3). b) The dataset is ordered
by using rough HR predictions calculated via PSD peak from the Tmaps (traditional method signals) resulting in more diverse mini-batche sampling (P4).

structs the coarse input signals in accurate physiological
signals. Using a Unet type architecture that predicts a signal
map (rather than a single signal) allows us to implement
the diverse positive/negative sampling by employing standard
mini-batches and shuffling along the pertinent dimensions.
Given the success of self-attention based transformers [12],
[23], we utilize Swin-Unet [4] (P2) as the backbone of our
framework, with the self-attention mechanism allowing for
stronger modeling of temporal sequences. Swin-Unet was
designed for medical-image segmentation, but can be used
as a general transformer backbone, as it is straightforwardly a
general Unet extension of the Swin transformer. This general
backbone allows us to take advantage of self-attention for
modelling temporal relationships and to implement the priors
efficiently on a large set of signals. Moreover, it was shown
to handle rPPG data well in PhySU-Net [36], where Swin-
Unet was adapted for supervised HR regression. To constrain
the network to learn rPPG signals, we add two regularization
terms. As the rPPG signal is band limited, Regbw (2) (P6)
keeps the model from generating signals outside the HR rele-
vant band as they correspond to irrelevant noise. Essentially,
Regbw tries to minimise the power in the irrelevant band,
normalised against the total power.

Regbw =

1
fmin

fmin
∑

f=0
x̄r,c( f )+ 1

F− fmax

F
∑

f= fmax
x̄r,c( f )

1
F

F
∑

f=0
x̄r,c( f )

(2)

To enforce sparsity in the output signal spectrum, we define
Regsp (3) (P7), encouraging the model to learn only the
salient frequency features likely corresponding to the HR
peak frequency, and penalising the model for outputting spec-

tra that do not resemble those of rPPG signals. Instinctively,
sparsity is encouraged by minimising the L2 norm of the
frequency min-max normalised spectrum, penalising non-
sparse frequency distribution.

Regsp =

√
1

fmax− fmin

fmax

∑
f= fmin

(
x̄r,c( f )−min f (x̄r,c( f ))

max f (x̄r,c( f ))−min f (x̄r,c( f )) )
2 (3)

The final training loss is simply the sum of the triplet
loss f T (1) and regularization terms Regbw (2) and Regsp
(3) averaged over the batch, ROI and channel dimensions.
Finally, we define a simple yet effective training strategy.
Firstly, we initialize F by pre-training it to predict Tmaps
X ′ from MSTmaps X (P3), learning first to predict coarse
traditional rPPG signals that it will later refine using con-
trastive learning. Taking the PSD of the input x̄r,c( f ) and of
the pseudo-label x̄′r,c( f ), the pre-training loss function L f is
defined as the L2-norm of the spectrum difference as shown
in 4.

L f =

√
R
∑

r=0

C
∑

c=0

fmax

∑
f= fmin

(x̄r,c( f )− x̄′r,c( f ))2 (4)

With pre-training we condition the network to learn the
frequency characteristics of the traditionally augmented sig-
nals, making the initial feature representation more physiol-
ogy specific.

During contrastive learning, to fully exploit the negative
sampling strategy (P4) it would be optimal to have mini-
batches with more diverse spectra as more varied samples
are more informative and will result in richer features. Thus,
random shuffling of the dataset for mini-batch sampling



can lead to having similar samples being used as negative
samples. To promote variety in each mini-batch, we first use
the Tmaps to get rough HR predictions for each sample,
and use these rough predictions to order the dataset so that
samples have varied HR in each mini-batch. The pre-training
and subsequent mini-batch sampling strategies are shown in
Fig. 3.

IV. EXPERIMENTS

We evaluate RS-rPPG on four rPPG datasets PURE [39],
OBF [19], MMSE-HR [53] and VIPL-HR [28], based on the
recording environment we classify PURE and OBF as con-
trolled due to stable lighting and minimal subject movement,
and MMSE-HR and VIPL-HR as challenging. We perform
an intra-dataset evaluation on all four datasets, and show that
RS-rPPG outperforms other SSL methods and reaches close
to supervised performance, especially on the challenging
datasets. We perform an extensive cross dataset evaluation
comparing our method directly to Contrast-Phys [40] as it is
a recent top performing SSL method, that shares similarities
with RS-rPPG, as it is also contrastive and heavily relies on
exploiting inter-data differences. We additionally propose a
new mixed dataset test by adding data from a challenging
dataset to a controlled dataset. Thus, simulating an unknown
unlabeled dataset containing non-uniform samples with both
controlled and challenging samples. We also provide an
ablation study to analyze crucial framework components,
perform a demographic based test on the OBF [19] data to
evaluate potential skin tone bias and test the framework on
shorter length inputs.

A. Experimental Setup

Datasets: 1) Controlled datasets: PURE [39] is a rPPG
dataset containing 60 one-minute-long videos from 10 sub-
jects under ambient lighting with small motion tasks (steady,
talking, slow translation, fast translation, slow rotation,
medium rotation). OBF [19] contains 200 five-minute-long
RGB videos recorded from 100 varied subjects, captured
with stable lighting and minimal movement of the subjects.
It contains videos under resting and elevated HR conditions.
2) Challenging datasets: MMSE-HR [53] has 102 videos of
length 20-70s recorded with stable lighting from 40 subjects
in emotion elicitation experiments. It contains challenging
motions as there are spontaneous facial expressions, and head
motions. VIPL-HR [28] contains 2,378 RGB videos of 20-
30s length recorded from 108 subjects. It was recorded in a
challenging environment with different devices, varied and
unstable frame rates, large movements and variable lighting.
It contains many sources of environmental noise, making HR
estimation very challenging.

Metrics: We follow previous works [13], [40] by using
absolute error (MAE), root-mean-square error (RMSE) and
Pearson’s correlation coefficient (R).

Training: We choose T = 576 (19.2s at 30fps) due to
VIPL-HR and MMSE containing many videos around 20s
long, for computational convenience, and to have a long
enough temporal context to benefit from self-attention. The

input videos are pre-processed as shown in Fig. 3a, resulting
in [3,64,576] sized MSTmaps and Tmaps. For the network
F , we utilise the official Swin-Unet implementation and
change only the following parameters from the default ones
to fit our task: img size=(64, 576), num classes=3, win-
dow size=4, mlp ratio=2. Firstly, MSTmap (X) to Tmap (X ′)
pre-training is run for 10 epochs, in this step the augmented
Tmaps are used as a pseudo-label for pre-training. Secondly,
we sample the mini-batches from the dataset following the
strategy shown in Fig. 3b. Thirdly, we perform contrastive
training for 30 epochs. Both in pre-training and training,
the AdamW optimizer is used with epsilon=1e-8, betas=(0.9,
0.99), lr=5e-5, wd=0.05. We train with batch=4 and m=2. No
additional training data augmentation is used, and training
samples are 576 frames long with no overlap.

Testing: For fair comparison with other methods in all
experiments we use the same validation protocols from
previous works, i.e., we use the PURE training-validation
split as [24], 3 fold for MMSE-HR [29], 5 fold for VIPL-
HR [28] and 10 fold for OBF [49]. All MSTmaps and
ground-truth signals are resampled to 30fps. When testing
for PURE and OBF 30s segments are evaluated. For MMSE-
HR and VIPL-HR experiments we choose to use 20s, as this
enables us to use most of the data for evaluation by including
shorter videos, providing a more challenging scenario. To
calculate the HR prediction, we average the output signals
over the ROI and channel dimension and find the highest
PSD peak. We only use ground-truth signals for evaluation,
as our output signals are taken directly without any labeled
re-training necessary. For comparison with Contrast-Phys we
faithfully re-implement their method, all the other results
come directly from[40] or the corresponding original papers.

B. Results

To the best of our knowledge, RS-rPPG is the first
SSL method focused on challenging rPPG data, as lack of
robustness is a serious limitation of current SSL methods.

Intra-dataset: In Table I we show the intra-dataset evalua-
tion. We rank the datasets based on their challenge level with
PURE [39] (small, good lighting, small movements, resting
HR) and OBF [19] (large, varied subjects, good lighting,
small movements, elevated HR) being considered controlled
datasets and MMSE-HR [53] (small, challenging movement)
and VIPL-HR [28] (large, unstable fps, different devices,
challenging lighting and movement) considered challenging.
We show obvious improvement on OBF and PURE, with
overall better performance than other SSL and comparable
to supervised. On the more challenging data, RS-rPPG vastly
outperforms other SSL methods, and obtains comparable
results to supervised learning methods on MMSE-HR, and
slightly lower than supervised on VIPL-HR dataset with an
RMSE of 10.5.

Cross/mixed-dataset: In Table II we perform an extensive
cross and mixed validation with all four datasets and directly
compare with Contrast-Phys [40]. RS-rPPG learns physiolog-
ically relevant features even from the challenging data, with
some larger RMSE in cross testing due to dataset differences,



TABLE I
INTRA-DATASET EVALUATION ON PURE [39], OBF [19], MMSE-HR [53] AND VIPL-HR [28], BEST PER TYPE UNDERLINED

Type Method
PURE [39] OBF [19] MMSE-HR [53] VIPL-HR [28]

MAE↓
(bpm)

RMSE↓
(bpm)

R↑ MAE↓
(bpm)

RMSE↓
(bpm)

R↑ MAE↓
(bpm)

RMSE↓
(bpm)

R↑ MAE↓
(bpm)

RMSE↓
(bpm)

R↑

Traditional
GREEN [43] - - - - 2.16 0.99 - - - 15.9 21.0 0.11
CHROM [9] 2.07 9.92 0.99 - 2.73 0.98 - 14.0 0.55 11.4 16.9 0.28
POS [45] - - - - 1.91 0.99 - - - 11.5 17.2 0.30

Supervised

Physnet [49] 2.10 2.60 0.99 - 1.81 0.99 - - - 10.8 14.9 0.20
RhythmNet [29] - - - - - - - 5.03 0.86 5.30 8.14 0.76
Dual-GAN [24] 0.82 1.31 0.99 - - - - - - 4.93 7.68 0.81
BVPNet [8] - - - - - - - 7.47 0.79 5.34 7.85 0.70
Physformer [51] - - - - 0.804 0.99 - - - 4.97 7.79 0.78

Self-supervised
Gideon2021 [13] 2.30 2.90 0.99 2.83 7.88 0.82 - - - - - -
Contrast-Phys [40] 0.69 1.10 0.99 0.42 1.34 0.98 1.78 6.03 0.86 17.8 22.8 0.17
Yue2023 [52] 1.23 2.01 0.99 - - - - - - - - -
SiNC [37] 0.61 1.84 0.99 - - - - - - - - -
RS-rPPG (Ours) 0.29 0.59 0.99 0.63 1.32 0.99 1.10 2.34 0.98 5.98 10.5 0.56

TABLE II
CROSS AND MIXED DATASET EVALUATION ON PURE [39], OBF [19],

MMSE-HR [53] AND VIPL-HR [28], BEST UNDERLINED

Test Data Train Data
RS-rPPG (Ours) Contrast-Phys [40]

MAE↓
(bpm)

RMSE↓
(bpm)

R↑ MAE↓
(bpm)

RMSE↓
(bpm)

R↑

MMSE 5.10 9.07 0.71 17.8 24.5 0.21
VIPL OBF 7.94 13.1 0.58 6.95 11.9 0.50

PURE 9.45 15.1 0.71 16.6 26.9 0.16
VIPL 3.42 8.54 0.81 33.3 35.9 0.01

MMSE OBF 1.50 3.27 0.97 5.09 12.3 0.51
PURE 3.21 9.74 0.78 27.8 40.3 -0.23
VIPL 1.92 6.08 0.87 17.8 25.3 0.16

OBF MMSE 0.38 1.01 0.99 16.9 25.3 0.04
PURE 1.03 3.39 0.95 1.29 4.09 0.94
VIPL 0.99 1.54 0.99 14.5 19.7 0.26

PURE MMSE 0.42 0.95 0.99 21.4 31.2 0.01
OBF 0.65 1.23 0.99 0.57 0.90 0.99

PURE PURE+VIPL 0.44 0.72 0.99 13.5 19.1 0.19
PURE+MMSE 0.30 0.68 0.99 0.74 1.07 0.99

OBF OBF+VIPL 0.63 1.39 0.99 13.6 22.7 0.11
OBF+MMSE 0.64 1.45 0.99 0.43 1.43 0.98

as samples from the testing data are not well represented in
the training data. Contrast-Phys [40] obtains good perfor-
mance only when trained on the large and controlled OBF
dataset, training on MMSE and VIPL-HR leads it to learn
non-physiological noise due to its weak self-supervision.
RS-rPPG retains similar performance when mixing samples
from challenging datasets into the controlled datasets, while
Contrast-Phys becomes unreliable when samples from the
challenging VIPL-HR are added to the training data.

Ablation: We perform an ablation study to show the
effectiveness of several crucial framework components in
Table III. In the ablation experiment related to (P2), we
simply replace the Swin-Unet [4] backbone with the con-
volutional alternative BVPNet [8]. For the other experiments
we remove the components related to the specific parts of the
method (and the corresponding priors). As can be seen , their
contribution is much more noticeable with the challenging

TABLE III
ABLATION STUDY ON PURE [39] AND VIPL-HR [28]

PURE VIPL-HR

MAE↓
(bpm)

RMSE↓
(bpm)

R↑ MAE↓
(bpm)

RMSE↓
(bpm)

R↑

RS-rPPG 0.29 0.59 0.99 5.97 10.5 0.56
w BVPNet (P2) 1.58 5.68 0.92 6.91 11.3 0.48
w/o Tmap (P3) 0.25 0.46 0.99 34.5 38.6 0.28
w/o MSTmap to Tmap
Pre-train (P3)

1.77 7.55 0.84 39.7 42.5 -0.03

w/o ROI Channel
sampling (P5)

0.34 0.80 0.99 7.30 12.0 0.43

w/o Regbw (P6) 0.32 0.79 0.99 6.18 10.58 0.56
w/o Regsp (P7) 0.61 2.02 0.99 8.53 14.3 0.50
w/o ordering Fig. 3b (P4) 1.72 7.99 0.82 7.15 12.3 0.37

VIPL-HR data, as without robust learning constraints, the
framework fails to learn physiological features from chal-
lenging data. In particular the novel traditional augmentation
(P3) is a crucial for training, as removing it leads to the
network learning non-rPPG features on challenging data.

Demographics: As rPPG methods have been shown to be
biased towards demographic groups, especially with darker
skin tones [1], we conduct a demographics based testing
on the OBF [19] dataset. We choose the OBF dataset, as
it contains 100 subjects of varied ethnicities and skin tone,
we use the annotations provided by the dataset authors that
categorise the subjects based on skin tone. The subjects are
categorised in three groups of: 31 subjects of lighter skin tone
(group 1), 41 subjects with middle-range skin tone (group 2)
and 28 subjects of darker skin tone (group 3). We perform
cross testing by training on two groups and evaluating on
the remaining one, in this way simulating a lack of skin-
tone diversity in the training data. In Table IV we first
show two traditional methods evaluated on the demographics
groups, there is a noticeable difference with the third group
that performs significantly worse on both methods with a
relative RMSE increase of 222% (CHROM [9]) and 423%
(POS [45]) when changing the testing group from 1 to 3. We



TABLE IV
DEMOGRAPHIC CROSS TESTING ON OBF [19] FOR THREE SKIN TONE

TESTING GROUPS, WITH RELATIVE INCREASE FROM GROUP 1 TO 3

Test
Group

MAE↓
(bpm)

RMSE↓
(bpm)

R↑

CHROM [9]
1 0.545 1.007 0.998
2 0.612 1.559 0.992
3 1.154 3.248 0.979

1→3 +112% +222% -1.90%

POS [45]
1 0.392 0.726 0.999
2 0.431 1.060 0.999
3 1.098 3.795 0.970

1→3 +180% +423% -2.90%

Contrast-Phys [40]
1 0.235 0.665 0.999
2 0.284 0.742 0.998
3 0.564 1.982 0.992

1→3 +140% +198% -0.70%

RS-rPPG (Ours)
1 0.444 0.801 0.998
2 0.390 0.806 0.998
3 0.881 1.913 0.992

1→3 +98.4% +139% -0.60%

TABLE V
SHORTER INPUTS INFERENCE ON PURE [39] AND VIPL-HR [28]

PURE VIPL-HR

MAE↓
(bpm)

RMSE↓
(bpm)

R↑ MAE↓
(bpm)

RMSE↓
(bpm)

R↑

RS-rPPG 0.29 0.59 0.99 5.97 10.5 0.56
Inference T=256 0.79 3.58 0.97 7.07 11.7 0.47
Inference T=128 1.52 3.20 0.98 8.11 12.7 0.40
Inference T=64 4.78 7.97 0.86 12.0 17.1 0.26

then evaluate Contrast-Phys [40] and RS-rPPG, and notice
that compared to traditional methods, they exhibit lower
relative increase in RMSE with 198% and 139% respectively,
with RS-rPPG showing the most demographically balanced
performance. Intuitively, we conclude that both SSL methods
do not significantly amplify the demographics bias and that
the higher error is most likely due to the poorer SNR ratio
for group 3, as the signal strength is highly correlated to the
skin tone.

Shorter inputs: We evaluate how RS-rPPG would scale
down to predict shorter length clips, as certain applications
could require prediction from segments much shorter than
20-30s. We perform this evaluation by varying the T length
of non overlapping input segments, and achieve this by
padding the input MSTmap to fit the base model’s length of
576. In Tab. V we see that performance naturally decreases
with smaller T , as the task becomes more challenging. The
performance decrease is gradual and consistent with the
higher difficulty of the task, with a sharper decline at 64
frames (≈ 2s) as the observed time-frame is much shorter
and very challenging.

Visualisation: In Fig. 4 we visualize the output of RS-
rPPG compared to GREEN [43] and Contrast-Phys [40].
With minimal environmental noise (PURE) even the raw
signal from GREEN [43] gives an accurate prediction, but for
a more challenging sample (VIPL-HR) the most prominent
raw signal peak corresponds to lower frequency noise, which

GREEN and Contras-Phys erroneously predict as the HR
peak. Due to its strong self-supervision, RS-rPPG ignores
the false peak and gives a more accurate output. In Fig.
5, we visualise the features of the network F with t-
SNE [42], and compare supervised learning with RS-rPPG
self-supervised. The feature distribution between RS-rPPG
and standard supervised learning on the same backbone are
indistinguishable, meaning that RS-rPPG can obtain the same
high quality features as supervised learning but without the
need for labels.

Fig. 4. rPPG extracted using RS-rPPG, Contrast-Phys [40] and Green [43].

Fig. 5. t-SNE [42] feature visualisation of supervised and RS-rPPG self-
supervised learning on the same backbone Swin-Unet backbone F

V. CONCLUSION

We propose RS-rPPG, a robust contrastive self-supervised
method that, in contrast to current SSL methods, can reliably
learn physiological features even from challenging data.
RS-rPPG is carefully constructed on a large set of priors
that enable strong self-supervision and greatly outperforms
current SSL on challenging data with close to supervised per-
formance. Future work can include investigating unlabeled
data from non-rPPG datasets and semi-supervised learning.
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