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Abstract— To make up for the inherent challenging nature
of 3D pose estimation, most multi-view frameworks rely on
camera calibration, often leading to impractical or constrained
architectures. Accurate human pose estimation is key to en-
hancing human-computer interaction, gaming, health, sport
and surveillance systems. By capturing precise and reliable
body positions, our approach enables efficient and innovative
downstream tasks. We leverage monocular 3D pose estimations
and a novel geometry driven attention mechanism inside of a
transformer lightweight architecture to produce high precision,
occlusion aware refined 3D poses, with varying number of
uncalibrated cameras. Our method shows competitive results
on the in-lab dataset Human3.6M and in the in-the-wild
environment of SkiPose PTZ-Camera, both in camera frames or
in a disentangled person centric referential allowing practical
downstream uses. Our approach matches state-of-the-art per-
formance on Human3.6M, while being at least 3 times lighter.
On the SkiPose base acquired under particularly difficult
conditions, our results exceed those of the state of the art by
being at least 3 times faster.

I. INTRODUCTION

Human Pose Estimation (HPE) is a highly studied research
area in the field of Computer Vision that has received
significant attention in recent years. The goal of HPE is to
accurately determine the position of the human body in a
given image or video. This position can be represented in a
variety of ways, including 2D keypoints, which define the
locations of main body parts in an image, or 3D points,
which provide information about the body’s location in a 3D
space. Such information can be used as inputs for numerous
purposes, making HPE a starting step of a wide range of
practical applications, including human activity recognition,
augmented reality and motion analysis. An example of
important field of application is sport. In elite sport, precise
movements are performed at often very high speed and
intensity, making it very challenging to monitor, analyze
and correct. Relying on pose estimation allows for instance
to compute 3D spatial information during elite sprinting,
as shown in Fig. 1. without having to use motion capture
system that would impair the athlete performance or hard-
to-use calibrated systems. In any cases, for the method to be
reliable, high precision is needed and must generalize well
between different view angles, camera setup and not be too
sensitive to occlusion.

The simplest approach is the monocular framework, where
a single RGB camera is used to compute the 3D position
of the body. Although being flexible and simple to use, a
single image is often not accurate enough to capture full
information about the space arrangement of the human body.

Indeed, HPE is a ill-posed problem by nature, given the
depth ambiguities. Occlusions, i.e. when a part of the body
is not visible from the camera, because of an element in
the environment or hidden by the body itself, are also an
important source of error. To overcome these issues, multi-
view approaches is an answer.

The use of synchronized views is often a viable solution,
as it can greatly improve the accuracy of the pose estimation
process (cf. Fig. 2). Seeing the same subject from multiple
angles allows to correct occlusion errors and reduce the
uncertainty caused by 2D projection. However, these ap-
proaches often require camera calibration to fully benefit
from the multi camera setup by triangulating the views.
Calibration limits the ease of deployment and use, therefore
practical applications of such systems. The intuition pre-
sented in this paper is that a calibration step is not necessary
when dealing with multi-view human posture estimation.
Indeed, given two synchronized views, the observed person
is at that moment in the same pose. Depending on the point
of view of each camera on the person, some components of
the 3D positioning of the joints in space can be determined
in a very reliable way whereas other ones are particularly
difficult to determine, especially along the line of sight to
the camera.

It is by relying on this complementarity according to
the incidence of view on the joints, that we propose a
transformer architecture for merging N estimates of im-
perfect 3D skeletons into a consolidated unified one. The
proposed model is designed to be flexible and easy to use.
There are no constraints on the required number of views,
and no calibration between cameras needs to be performed.
Additionally, the network operates directly on keypoints in
relatively low dimension. As a consequence, the network is
lightweight, easy and fast to train but also to infer with.
Finally, it is highly modular since any on the shelf monocular
2D and 3D HPE models can be used upstream.

II. RELATED WORK

By analogy with 2D HPE [17], state of the art for multi-
person detection can be distinguished in two different ways,
either the person concept is inferred lately by a reconstruction
according to its articulations (bottom-up approach) as in [3],
[16], or it is inferred upstream by a prior detection of the
person in its entirety (top-down approach) as in [2].

However, when dealing with 3D estimation from 2D infor-
mation, the main problem is the 3D estimation itself. Thus,
many methods put aside the multi-person aspect, either by
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Fig. 1. Qualitative example of an In-the-wild 2 cameras scenario. On the bottom, two different angles of the refinement module estimation. On top, the
aggregation module output from two different angles.

214 / 57 mm 52 / 44 mm

Inputs

Fig. 2. Qualitative example on SkiPose. Estimation given by the monocular lifter and associated MPJPE (mm) are given in red, in both camera frames.
In blue, estimation and scores after the 2-view refinement. Ground truth in black.

making the hypothesis that the processed image is adjusted
and centred on the individual of interest [15], or by exploiting
a top-down approach whose vocation is precisely to centre
the analysis on a person after having detected it [2].

When focusing on the 3D estimate, many other works
can be highlighted. Indeed, recovering 3D information using
a single image is an ill-posed problem. However, deep
learning methods are capable of producing satisfying results
even from a single image. Most methods take advantage
of excellent 2D pose estimation to infer depth information
from a set of 2D keypoints [19], [21]. Other works [5], [18]
tried to mitigate the problem of generalization on ”in the
wild” context and rare pose that are not present in public
datasets generally made in lab environments. Ultimately, to
reliably regress 3D position from images, more information
can be added. It can be either temporal [11], [20], using
multiple adjacent frames from a single camera, or spatial,
using multiple views from several synchronized cameras [4],
[14]. Some methods use both to obtain better performance
such as [12], [6].

Concerning multi-view approaches which are at stake in
this paper, to fully integrate this geometric knowledge into
architectures, some work directly use calibrated cameras

[16], [9], [4]. The cameras extrinsic information are used in
[16] to augment the image features, using convolutions, with
geometric information. In the attention formulation, camera
parameters are used to sample features of the different views
corresponding to the same local 3D neighborhood. Given a
2D feature map of each view, [4] create a cuboid around
the person pelvis, project it into each view 2D image plane
thanks to camera parameters, and use bilinear interpolation
to extract 2D features at the cuboid coordinates. The view-
dependent features of the cuboid are then aggregated using
a softmax operation. In a similar way, [9] build a voxel
feature space in which detection is made, followed by person
tracking and pose estimation.

While having the best performance, the need for a precise
camera calibration make theses approaches very restrictive.
To alleviate these constraints, work has been made on
3D HPE without camera calibration [6], [7], [12], [14].
Geometric clues are used in different ways to replace the
direct information granted by camera parameters. The fact
that bone lengths and joint angles do not depend on camera
positions is used by [6] to regress a single, camera inde-
pendent 3D skeleton using the aggregated 2D poses of each
view. The invariant bone length is also used in [7], in which
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Fig. 3. The architecture overview. The refinement module shares the information between all views to refine them in their own camera frame. A second
module, the aggregation module, produce a fused 3D pose in person-centric frame, freed from any camera representation.

two camera calibration matrices are estimated, then used
to perform a stereoscopic triangulation on two 2D poses.
Similarly, an unrestricted number of cameras relative position
are estimated in [14] using rough 3D poses obtained by
a monocular 3D pose estimator. The different 3D poses
are then rigidly aligned using the estimated calibration, and
a refined 3D pose is obtained by computing the average
pose. This pose is then refined using the 2D joint location
heatmaps in each view. Finally, [12] proposes a relative-
attention module based on the attention mechanism adapted
for the search for relative relationships in different views of
the same pose.

III. METHOD

We present our architecture, capable of producing a high
precision, occlusion aware single person human 3D pose
estimation from several synchronised image without cali-
bration. An overview of the approach is given in Fig. 3.
Triangulating from two viewpoints is easily provided when
the calibration between the cameras is available. Avoiding
calibration implies understanding the relative position be-
tween the cameras based on the observed person’s posture,
which can be challenging. Our proposal is to make use of
this information explicitly through an attention mechanism,
leveraging a 3D estimation of the posture in each camera.
Additionally, when dealing with multiple viewpoint, the
choice of the final working frame is often ignored or avoided
by taking an empirical convention (ex. first camera frame.
To overcome this problem, we propose an extra module to
merge the estimation into a single skeleton expressed in a
person-centric frame.

A. Input preparation

1) 3D pose extraction: We first employ a top-down
pipeline to extract 3D skeletons from images. Given N syn-
chronised RGB images, we use a pre-trained human detector
followed by a 2D pose estimator to independently extract 2D
keypoints from each images. We get P2D ∈ RN×K×2 the
position on the image of the K keypoints, and C ∈ RN×K

the corresponding keypoint confidence, 0 ≤ ck ≤ 1

Next, we use an off-the-shelf 3D pose lifter L on each 2D
pose

P3D = L(P2D) (1)

with P3D ∈ RN×K×3 the 3D coordinates of each of the K
keypoints. The 3D position is root-relative, and is expressed
in the camera frame of each of the N views.

2) View specific geometric confidence: It is intuitive that,
given a specific camera, a lot of ambiguities will lie in
the depth axis. We want to quantify this factor, in order to
integrate this knowledge into our architecture .

Let F = (Xp, Yp, Zp) be a person-centric frame, with
its origin lying on the person pelvis. The first vector Xp is
pointing toward the left hip, Yp is aligned with the spinal
column. The last vector Zp is defined so that (Xp, Yp, Zp) is
a direct frame. In most cases Zp will point in the direction
the person is facing. This representation is showed in Fig. 4.
Defining such frame disentangled from camera configuration
will allow us to quantify uncertainty in the same frame for
all the different cameras.

Let us now consider the two following examples, in Fig.
5, on the left example, the person has the camera on its
left side. Intuitively, estimating Xp coordinates of all joints,
in the person-centric frame, from this view will be very
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Fig. 4. Representation of the person-centric frame and the camera frame.
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Fig. 5. On left image Xp component of the elbow cannot be well estimated
from a camera on the left of the person whereas Zp can. On the right, it is
the contrary.

challenging. Notice how the camera optical axis Zc and the
Xp vector are collinear. On the right image, the person is
facing the camera. This view will now allow for a good
estimation of the Xp coordinates. Now, the camera optical
axis and Xp are normal.

Thus, we argue the following : given a camera optical
axis d, the collinearity between d and a given person-centric
axis allows for a measure of the estimation capacity along
this axis. This capacity being minimal when the two vectors
are collinear, and maximum when orthogonal. The score
quantifies the reconstruction ability for the whole pose within
a particular camera angle.

Formally, let Zc be the camera optical axis and Xp, Yp

and Zp the person-centric frame axis in the camera frame,
as shown in Fig. 4.

We define the view-specific geometric confidence cX , cY ,
cZ as

cX = 1−|Xp.Zc|, cY = 1−|Yp.Zc|, cZ = 1−|Zp.Zc| (2)

with 0 ≤ cX , cY , cZ ≤ 1. Adding these 3 coefficients to
the estimator confidence c, we obtain a score vector S ∈
RN×K×4

B. Embedding module
Given the two vectors P3D ∈ RN×K×3 and S ∈

RN×K×4, containing respectively the 3D coordinates in each
of the camera frames, and the confidences scores c, cx, cy, cz
for each keypoints in all N views. Previous work [6],
[12] showed the benefits of integrating confidences into the
embedding modules. Inspired by these previous works, we
design the following embedding module.

As we operate equally along all views and keypoints, the
first two dimensions are omitted for the sake of clarity. Let us
then consider a keypoint pk ∈ R3 and the associated score
vector sk ∈ R4. We define two linear layers fP , fQ, such
that

ePk
= fP (pk), eSk

= fS(sk) (3)

with ePk
∈ RDemb , eSk

∈ R(3∗Demb) and Demb the
embedding dimension. The correctness can vary greatly
between the different 3D input keypoints, as it depends on

the image quality, camera point of view and 2D detections.
We want the model to operate with this uncertainty in the
embedding module.

The position embedding eSk
is thus used to modulate the

position pk, added to ePk
and finally combined with a final

linear layer h. To add body structural information, and help
the networks relate the associated keypoints in the different
views, the combination is summed with a learned vector L =
{lk ∈ R×Demb |k ∈ J1,KK}, that acts as positional encoding.
This vector is unique for each joint type.

xk = h(ePk
+ pk.eSk

) + lk (4)

Operating the same way for every keypoints in every view,
we get a high dimension representation X ∈ RN×K×Demb

of our poses.

C. Refinement transformer

The goal of this module is to refine each 3D pose in its
own camera frame, by sharing information between all of
the different representations.

Let M = K ∗ N be the total number of keypoints on
all views, we first reshape the input X into RM×Demb . Let
i ∈ J1,MK and xi ∈ RDemb a particular keypoint we want
to refine using the set of keypoints X = {xj | j ∈ J1,MK}
and the associated scores S = {sj | j ∈ J1,MK}. Let fq ,
fk and fv be three fully connected layers used to compute
query, keys and values from the desired vectors :

qi = fq(xi)

K = {kj = fk(xj) | xj ∈ X}
V = {vj = fv(xj) | xj ∈ X}

(5)

We then use two MLPs fqk, fs to get attention vectors aij

aij = fqk(qi − kj) + fs(si − sj) (6)

Attention vectors are now combined with values vj

x
′

i =
M∑
j=1

σ(aij)⊙ vj (7)

with ⊙ the element-wise product and σ(.) the softmax
function defined by

σ(aij) =
eaij∑M
j=1 e

aij

(8)

Lastly, the embed keypoint is projected back into a three
dimensional space using a final MLP , pi = fproj(x

refined
i ).

Proceeding the same for all keypoints, we obtain P refined ∈
RN×K×3, holding N refined 3D pose estimation, each in its
own specific camera frame.

The loss for training this module is a standard MSE
loss computed between P refined and the ground truth P̃
expressed in each corresponding camera frame.



TABLE I
QUANTITATIVE COMPARISON ON HUMAN3.6M OF MULTI-VIEW APPROACHES THAT DO NOT REQUIRE CAMERA CALIBRATION. MPJPE IN MM IS

GIVEN FOR ALL THE DIFFERENT ACTIONS FEATURED IN THE DATASET, USING ALL 4 CAMERAS. REF. DENOTES THE REFINEMENT MODULE, AGG. THE

AGGREGATION MODULE. ⋆,† INDICATE THAT 27 FRAMES WERE USED DURING TRAINING AND INFERENCE RESPECTIVELY. BEST IN BOLD, SECOND

BEST UNDERLINED

Dir. Disc. Eat. Greet. Phone Photo Pose Purch. Sit. SitD. Smoke Wait WalkD. Walk. WalkT. Avg Parameters
Flex ⋆,† [6] 23.1 28.8 26.8 28.1 31.6 37.1 25.7 31.4 36.5 39.6 35.0 29.5 35.6 26.8 26.4 30.9 70.6 M
MFT † [12] 24.2 26.4 26.1 25.6 29.4 29.7 25.1 25.4 32.4 37.4 27.1 25.4 29.5 23.8 24.4 27.5 10.1 M
MetaPose[14] - - - - - - - - - - - - - - - 49 3 M
Ours (Ref.) 28.7 28.7 28.8 29.0 31.0 34.7 27.4 26.0 33.1 36.1 30.1 27.4 31.3 26.1 27.7 29.8 1.7 M
Ours (Ref. + Agg.) 31.1 30.1 28.0 30.2 30.7 34.7 30.2 27.3 32.4 35.7 31.7 28.7 33.3 28.6 31.6 30.9 3.7 M

D. Aggregation transformer
This module answers the question of which frame should

be used after the refinement module. Without any prior, no
camera frame is assumed to be better than another. Of all the
possible frames, those defined by the skeleton itself stand
apart and allow to work with a normalized representation.
We choose the skeleton frame, F , defined in part III-A.2

The aggregation transformer operates the exact same way
as the previous module, but instead of refining each views
given the others, we use a learnable set of embedding X l ∈
RK×Demb that is used as queries in our transformer archi-
tecture. Hence, we will obtain a unique refined estimation
instead of N previously.

In a similar fashion, let us consider the set of embed
refined keypoints X r = {xr

j | j ∈ J1,MK}, the associated
scores S = {sj |j ∈ J1,MK}, (hq , hk, hv) three linear layers,
(hqk, hs, hproj) three MLPs. We get queries qi, keys kj and
values vj ∀i ∈ J1,KK, ∀j ∈ J1,MK

qaggi = hq(x
l
i), kaggj = hk(x

r
j), vaggj = hv(x

r
j) (9)

aaggij = hqk(q
agg
i − kaggj ) + hs(sj) (10)

xl′

i =
M∑
j=1

σ(aaggj )⊙ vaggj , paggi = hproj(x
l′

i ) (11)

We get P agg ∈ RK×3 the aggregated 3D pose estimation,
expressed in the skeleton frame F .

IV. EXPERIMENTS

A. Datasets
Human3.6M [8] is a substantial dataset comprising a total

of 3.6 million images featuring seven different individuals

TABLE II
EVALUATION ON SKIPOSE PTZ-CAMERA. MPJPE AFTER OPTIMAL

RIGID ALIGMENT IS REPORTED FOR 2 AND 6 CAMERAS. INFERENCE

TIME FOR 6 CAMERAS ON A V100 IS ALSO REPORTED. BEST IN BOLD.

P-MPJPE ∆t

Camera number 6 2

MetaPose [14] 42 50 0.4
Ours (Ref.) 41.0 53.9 0.066

Ours (Ref. + Agg.) 39.4 48.5 0.133

engaged in 15 distinct tasks, all captured by four calibrated
cameras. This dataset provides both 3D and 2D pose annota-
tions for each frame. Following established practices in prior
research, we employ subjects 1, 3, 5, 6, and 7 for training
purposes, reserving subjects 9 and 11 for evaluation.

Ski-Pose PTZ-Camera [13] is a rare in-the-wild multi-view
dataset, capturing alpine skiers during slalom runs using six
calibrated cameras. This dataset offers 3D pose annotations
along with corresponding 2D projections across a collection
of 20,000 images. Ski-Pose PTZ-Camera adheres to the MPII
[1] joint convention. It’s worth noting that the SkiPose joint
convention differs from that of H3.6M, and the performance
of the monocular 3D estimator used is significantly affected.
Consequently, we train our monocular 3D lifter on the
standard train-test split of the dataset, following the approach
outlined in [14].

For both datasets, we employ the Mean Per Joint Posi-
tion Error (MPJPE) metric, measured in millimeters. This
metric quantifies the mean Euclidean distance between the
estimated 3D joint positions and the corresponding ground
truth points, with the two pelvis joints aligned to the origin
for consistency.

B. Implementation details
a) Architecture : We employ [10] to do human detec-

tion, [17] for 2D pose estimation and [19] for 3D monocular
pose estimation. [17] use several joints labelling convention,
but not Human3.6. In order to adapt its convention, we
finetune [17] so that it outputs joints in the same convention
used by [19]. This first part of the architecture is then frozen.

b) Hyperparameters : Demb is equal to 128 throughout
the model. The two modules, refinement and aggregation, are
trained in a sequential manner. We first train the refinement
module for 100 epochs, with a learning rate of 10−4, divided
by 10 at epoch 50 and 75. ==We found experimentaly that
this set of parameters lead to the best results.== This first
module is frozen, and the aggregation module is trained with
the same hyperparameters, using the refined 3D poses as an
input.

c) Data augmentation : We follow three different
masking strategies, by setting selected values to −∞ in
attention matrices. This amounts to removing connections
between certain keypoints inside the transformers. First, no
masking is applied during training : all keypoints from all
cameras can be used to compute all other keypoints values.



TABLE III
ARCHITECURE ABLATIONS ON H3.6M. WE REPORT THE MPJPE FOR BOTH REFINEMENT AND AGGREGATION MODULES AND VARYING NUMBER OF

CAMERAS DURING INFERENCE. BEST IN BOLD.

Refinement Aggregation

Camera number 1 2 3 4 1 2 3 4

2D base 56.9 43.1 38.3 35.9 59.2 45.8 40.5 38.5
3D base 53.6 39.6 34.4 32.1 57.1 41.7 36.2 34.0

Full model /wo positional encoding L 53.4 41.5 37.2 35.3 57.5 43.1 38.0 35.9

Full model 53.1 37.1 31.9 29.8 52.0 38.0 32.9 30.9

Secondly, we try random elements masking with a proportion
p = 0.4, as suggested in [12]. Lastly, we randomly mask
complete views during training, by masking all keypoints
related to said views. The number of masked views is
uniformly drawn in J0, N − 1K

C. Quantitative results
a) On Human3.6M : Results of our approach and state

of the art multi-view approaches that do not use camera
calibration are given in Table I. Our approach competes
with state of the art architectures, ranging 2mm below [12],
placing second on average and have 20mm improvement on
[14]. Both [12] and [6] are trained with a 27 frames windows,
and use respectively 1 and 27 frames at inference. While not
using any temporal information nor modelling, our method
is capable of producing competitive estimation with a lighter
model. We believe that leveraging 3D poses and geometry
confidences closes this gap. We also report results for the
aggregation module.Using this module leads to a drop of 1.1
mm in performance, which is likely caused by the change of
referential, from the camera frames to the skeleton frame.

b) On Ski-Pose PTZ-Camera : We also perform
a quantitative evaluation on Ski-Pose PTZ-Camera. This
dataset is interesting for two main reasons. First, it is an in-
the-wild environment, featuring challenging poses allowing
to exhibit capacity of approaches outside of a lab environ-
ment. Secondly, the camera are rotating during the runs,
making it a perfect example of a scenario where precise
calibration is hard to acquire. As shown in Table II, our
method is sensibly better than [14], while being signifi-
cantly faster. Our approach performs better on both 6 and 2
camera scenario. A relevant 2-cameras refinement example
on SkiPose is showed in Fig. 2. Left estimation, originally
disturbed by snow occlusion, is remarkably refined thanks
to the second camera. More interestingly, even the right
estimation benefits from the process with a 8mm MPJPE
upgrade.

D. Qualitative results
We also showcase three distinct qualitative examples. In

Fig. 6, we feature a particularly challenging example from
the H3.6M test set. Furthermore, we present in Fig. 7 an
example from SkiPose captured using six cameras, effec-
tively demonstrating the advantages of leveraging multiple
viewpoints. Notably, the monocular lifter yields suboptimal

estimations for the 4th and 6th views, but these are success-
fully refined through the fusion process. We finally show
an example in-the-wild of an athlete sprinter recorded by 2
cameras, in Fig. 1. We observe that estimations are still better
in axes favored by the camera angle, even after refinements.
On the bottom left, elbow and knee angles are more precise,
while on the other view, legs and arms placement are better.
Ideally, the two estimations would be the same, except for
a rotation between the two camera frames. In pratice, this is
not always desirable, as some views can be occluded, noisy
or more challenging. The aggregation module effectively
addresses this issue by successfully capturing geometric
cues, resulting in a reduction of the impact of camera angles
on the estimation. In the middle, the output of the aggregation
module exhibits improved articulation angles and correct
body placement.

E. Ablation study

a) Architecture study : We now want to study the
impact of two key components of our architecture : the direct
use of 3D keypoints inside of our transformer architecture
and the geometric confidence. We thus compare three dif-
ferent models : the 2D base, where the estimation is now
done with 2D keypoints as an input. The use of geometry
confidence is also removed, as it is impossible to get without
a first 3D regression. Secondly, we study a 3D architecture,
where the geometric confidence is removed, and the scoring
vector is only made of the 2D detector confidence. Lastly,
the last architecture is the full model. Results are reported
in Table III.

Using 3D as an input instead of 2D leads to a gain of at
least 3mm in all cameras situations, for both modules. Using
the geometric confidence paired with 3D input also leads to
performance gains, that increase as the number of cameras
goes up. No benefits are observed when using only one
camera, which is expected . When using 2 or more cameras,
we observe a performance upgrade of 1mm in both modules.
This validates our assumptions that geometric confidence is
useful for extracting relevant information in the different
views.

b) Encoding : We also report the benefits of using the
position encoding L, used in (4), in Table III. Compared to
the full model, the gap in performance increases with the
number of cameras, hence confirming that prior information



TABLE IV
MASKING ABLATIONS ON H3.6M. WE REPORT MPJPE ON THE TESTING SET FOR ALL THE DIFFERENT STRATEGIES, USING VARIOUS NUMBER OF

CAMERAS DURING INFERENCE. BEST IN BOLD.

Refinement Aggregation

Camera number 1 2 3 4 1 2 3 4

No Masking 202.0 81.6 43.9 29.2 172.3 62.7 38.9 30.7
Rand. ind. Masking 170.1 81.9 44.8 29.4 145.8 64.1 39.3 30.2

View masking 53.1 37.1 31.9 29.8 52.0 38.0 32.9 30.9

about body structure help the network relates relevant key-
points from different camera together to share information
between different viewpoints.

c) Masking : Results for different masking strategies
during training are shown in Table IV. For all strategies, the
training is done with the maximum amount of cameras avail-
able, which is 4 in H3.6M. The number of camera showed is
the one used during inference on the test set. View masking
allows our model to generalise well on different number of
cameras whereas the other masking strategies always have 4
cameras as inputs and overfit on this configuration. View
masking results are overall far better in all configuration
except for the overfitting case of 4 cameras where results
are slightly lower.

d) Aggregation study : We now want to study the
benefits of the aggregation mechanism and module. We thus
compare the output of the aggregation module with a mean
aggregation mechanism : we rotate refined skeletons into
their respective skeleton frame before computing the per-
joint average. This mean-aggregated skeleton is then com-
pared to the ground truth of the test set of both datasets. We
compare this score to the one obtained with the aggregation
module in Table V. On H3.6M, the aggregation module
does sensibly worse compared to the mean aggregation.
On the contrary, it does better on SkiPose. This outcome
is anticipated due to the geometric and angle similarity
among all cameras, resulting in per-camera refined skele-
tons of comparable quality within the H3.6M dataset. On
SkiPose, the camera configuration is not as uniform. Because
of occlusion or challenging camera angles, the per-camera
estimation is not of consistent quality throughout the views.
A good example of such situation is showed in Fig. 2,
where computing an aggregated pose from the average would
badly hurt the final estimation, and the fusion has to be
weighted toward the right skeleton. To support this intuition,
we compute the per-camera MPJPE standard deviation on the
test set of both dataset : for each time frame, we compute
the MPJPE for each camera. We then compute the standard
deviation of this error for the different views, and report the
mean standard deviation of all time frames in in Table V.
As expected, it is much lower on H3.6M where the camera
distribution is much more regular.

V. CONCLUSION

In this article, we present a multi-view 3D pose esti-
mation network capable of competing with state-of-the-art

TABLE V
QUANTATIVE ANALYSIS OF THE AGGREGATION MODULE. MEAN

ESTIMATION DENOTES THE AVERAGE OF REFINEMENT MODULE OUPUTS

(4 FOR H3.6M AND 6 FOR SKIPOSE) AFTER ALIGNEMENT IN THE

PERSON-CENTRIC FRAME. MPJPE IN MILIMETERS IS GIVEN ON THE

TEST SPLIT OF BOTH DATASETS

MPJPE

Dataset H3.6M SkiPose

Mean estimation 30.73 54.1
Agg. module 30.93 52.1

Camera standard deviation 3.2 17.3

approaches. Our method achieves this by refining multiple
monocular estimations together, all without relying on tem-
poral information or modeling.

Instead of designing a system that requires calibrated
cameras, we leverage 3D inputs, departing from the typical
2D approach. This allows us to establish a geometry-driven
attention system that guides the network to establish connec-
tions between different poses and share relevant information
across various viewpoints. The result is a lightweight ap-
proach that achieves state-of-the-art performance, all without
the need for temporal information or complex modeling.

However, it’s important to note that our approach re-
mains sensitive to the performance of 2D and 3D monoc-
ular estimators and relies on acceptable initial estimations.
Addressing this initial weakness is a priority for further
research. Additionally, acquiring multi-view 3D data can
be challenging. Exploring self-supervised approaches based
on geometry constraints to overcome this issue presents an
intriguing research direction.

Finally, we believe that the attention mechanism we pro-
pose could benefit a wide range of attention-based architec-
tures. This is a hypothesis that we intend to verify through
evaluation with the latest state-of-the-art approaches in the
field.
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Fig. 6. 4 cameras example on H3.6M. Estimation given by the monocular lifter and associated MPJPE (mm) are given in red, for each camera frames.
In blue, estimation and scores after the 4-view refinement. Ground truth in black.
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Fig. 7. 6 cameras example on SkiPose. Estimation given by the monocular lifter and associated MPJPE (mm) are given in red, for each camera frames.
In blue, estimation and scores after the 6-view refinement. Ground truth in black.
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