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Abstract— Re-identification (ReID) of individuals across dif-
ferent cameras is a challenging task due to the high-quality
large-scale datasets required for the model. Intra-camera su-
pervised (ICS) person re-identification has been proposed to
address the high cost of annotating large-scale datasets, but
reducing the gap between camera domains remains a major
challenge. Current approaches use intra- and inter-camera
learning with contrastive learning performed separately in
both phases. However, the effect of features from the same
person under different cameras on the model during inter-
camera learning, and the fine-grained characteristic where the
same person can be classified into multiple classes based on
the camera labels, still require further research. To address
this issue, we propose a Camera-Based Contrastive Learning
(CBCL) method that moves features away from their respective
cameras and closer to other cameras to reduce domain gaps. We
also introduce an Intra-Person Camera Adversarial (IPCA) loss
that effectively utilizes fine-grained characteristics of person re-
identification and improve IPCA by introducing camera labels
to obtain IPCA 2 which achieves better model recognition per-
formance than IPCA alone. Extensive experiments on multiple
datasets demonstrate that our method outperforms existing
methods and is comparable to fully-supervised methods.

I. INTRODUCTION

Person re-identification (ReID) aims to identify individuals
across multiple non-overlapping cameras. In recent years,
there has been significant advancement in supervised per-
son re-identification [26], [19], [40], [3], [28], [24], [18],
[38], resulting in its increasing practical applications. How-
ever, with the widespread adoption of supervised person
re-identification, researchers have found the data annota-
tion process to be excessively cumbersome. In practical
applications, in order to meet the delivery standards of
the model, it is necessary to collect real surveillance data
from the deployment area of the project and annotate the
obtained large-scale data. However, annotating large-scale
data for ReID is a laborious and time-consuming process
that can significantly impede project progress. Consequently,
researchers have shifted their attention to unsupervised and
domain adaptation ReID [2], [6], [7], [9], [11], [27], [39],
[17], [31], [35], [36], [37].
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Fig. 1: (a). From an individual perspective, the global person
centroid contains multiple camera centroids. (b). From a
camera perspective, the global camera centroid also contains
multiple person centroids. Different shapes represent differ-
ent individuals, while the different colors represent different
cameras. (c). From both perspective. The first image and the
second image are captured by the same camera but from
different persons, whereas the second and third images are
from the same person but from different cameras, resulting in
different colors of the clothes displayed in the two pictures.
Thus they can be viewed as three different identities.

The former training directly on unlabeled data, while the
latter pre-training the model on the source dataset and fine-
tuning it on the unlabeled target dataset. However, both meth-
ods overlook the unique characteristics of data annotation in
ReID.

The annotation of ReID data typically begins by annotat-
ing each camera’s data separately and then further annotating
the data from different cameras to assign the same label
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to images of the same individual across different cameras.
During this process, annotations within each camera can
be obtained easily through tracking algorithms. Therefore,
based on this characteristic, Intra-Camera Supervised (ICS)
ReID has been proposed, which differs from unsupervised
and domain adaptation methods in that it utilizes data that
lacks cross-camera annotations.

The difficulty of Intra-Camera Supervised ReID lies in the
fact that each camera, due to its lighting and viewing angles,
can result in significant feature differences for the same
individual across different cameras. Therefore, reducing the
style differences between cameras has become the main
focus of Intra-Camera Supervised (ICS) ReID. Current ICS
methods utilize the labeled data within each camera for
supervised training separately and then conduct inter-camera
training using assigned pseudo-labels, which has proven
effective [21], [41], [30], [32], [29], [15]. However, these
methods only utilize the features from different cameras
(named as camera centroid) of individuals without further
investigate the impact of camera centroids of the same
individual under different cameras on model, and overlook
the fact that the same individual can actually be classified
into multiple classes according to camera labels.

To address these limitations, we build our model on the
intra-camera and inter-camera learning framework used in
existing ICS while introducing a novel camera-based con-
trastive learning during inter-camera learning. Due to the na-
ture of ICS problem, we can obtain camera centroids in other
cameras with the same identity as the query during inter-
camera learning. However, during intra-camera learning, the
camera centroid of the same camera as the query already
contains information about the query. Therefore, using it as
a positive sample for contrastive learning may impede the
model’s ability to capture the intra-camera diversity of a
person. To prevent overfitting to one specific camera, we only
use the camera centroids with different camera labels from
those of the query as positive samples during inter-camera
learning.

At the same time, ReID can be regarded as a fine-grained
problem. Based on the camera, there are multiple different
person classes exist in the same camera. Based on the
person, there are also multiple camera classes exist in the
same person. In summary, as long as one of the person
class and camera class of the two pictures is different, it
can be regarded as a different class, as shown in Fig.1.
Taking advantage of the fact that the same person can be
classified into multiple classes based on camera labels, we
designed an Intra-Person Camera Adversaria Loss that in-
volves adversarial learning between different cameras for the
same person. This encourages the backbone network to learn
features that are invariant to the camera and specific to the
person. Compared to traditional domain adversarial methods,
this approach avoids interference from other indentities in
the same camera and effectively eliminates camera style
differences.

II. RELATED WORK

A. Intra-Camera Supervised Person ReID

The mainstream method of existing Intra-Camera Su-
pervised Person ReID is to divide the training into intra-
camera learning and inter-camera learning. During inter-
camera learning, previous methods mostly used simple triplet
loss or parameter classifiers to learn from labeled data
between cameras, such as PCSL [21], ACAN [22], MATE
[41], but due to the limitations of triplet loss and parameter
classifiers, the results are not ideal. Precise-ICS [30] pro-
poses assigning a non-parametric classifier to each camera
to address the issue of imbalanced numbers of images for
different identities within each camera, and has achieved
good results. This setting is also adopted by DCL [15]
and GCL [32]. During inter-camera learning, SPCL [11]
uses a soft label approach and employs triplet loss, while
MATE [41] utilize a multi-task framework and employ multi-
label learning on that framework. ACAN [22] eliminates
style differences in cross-camera data by conducting adver-
sarial learning between different cameras. However, since
person re-identification is actually a fine-grained problem,
only considering camera labels and conducting adversarial
learning between images from different cameras of different
pedestrians can eliminate camera style differences, but it
can also affect the model’s ability to distinguish person.
Precise-ICS [30], on the other hand, proposes an effective
ID association method based on the characteristics of the
ICS problem, which greatly reduces the noise of pseudo-
labels in the ICS problem and far exceeds previous methods
in terms of mAP. We also use adversarial methods to make
the model focus on camera-irrelevant features, but unlike
ACAN, we introduce the pseudo-label association method
in Precise-ICS [30] to obtain more accurate pseudo-labels
and design an adversarial loss between the same person in
different cameras.

B. Contrastive Learning

With the widespread application of contrastive learning
[13], [4], [5] in various fields, it has also shown good results
in person re-identification. Cluster Contrast [9] changes the
memory dictionary in person re-identification contrastive
learning from instance-level to cluster-level, and uses hard
samples from each batch to update the dictionary, in order
to solve the problem of different numbers of instances for
each class in training data and pseudo-label noise. Wang
et al. [30] and others used a contrastive learning method
within and between cameras to effectively learn identity
recognition capabilities within and across cameras. MCRN
[34] created a Multi-Centroid Memory structure by dividing
each class obtained by clustering into multiple subclasses,
and then selecting positive and negative samples from these
subclasses to remove noise from pseudo-labels and ensure
model diversity. This paper starts from the characteristic that
images of the same person come from multiple cameras,
and selects positive and negative samples according to the
camera to which the sample belongs on the basis of intra-



Fig. 2: The framework of the final model. The MCCN does not include the adversarial module and the selection module.
Here, different colored blocks represent features of individuals from different cameras, while dashed blocks represent features
of individuals who are the same as the query.

camera learning and inter-camera learning, avoiding overfit-
ting within the same camera.

C. Adversarial Learning

Adversarial learning was first applied in GANs, and its
ideas have been widely used in various fields. Domain ad-
versarial learning has shown good results in eliminating style
differences between domains, and has been widely applied
in ReID, with some people applying it to eliminate style
differences between cameras [22]. However, using traditional
domain adversarial learning to eliminate camera styles can
also affect the model’s ability to distinguish pedestrians.
Gu [12] and others proposed a clothing-based adversarial
loss (CAL) to decouple clothing-independent features. This
paper applies the idea of CAL to eliminate camera styles
by employing adversarial training between images captured
by different cameras of the same individual. This enables
the model to extract camera-agnostic features and, compared
to existing traditional domain adversarial methods, it also
avoids reducing the model’s pedestrian recognition capabil-
ity.

III. METHOD

A. Multi-Camera Centroid Network

By combining the advantages of existing ICS models[21],
[41], [30], [32], [29], [15], we have built a high-performance
model as our baseline, which we refer to as Multi-Camera
Centroid Network (MCCN). Unlike fully supervised ReID,

the data set of intra-camera supervised ReID absent inter-
camera annotations, only the same label under one camera
can be guaranteed to be the same person. Therefore, we first
look at each camera’s data separately, assuming that there
are C cameras in total, each has Nc images and Yc person
identities, then each camera’s image can be represented as
Dc {xi, yi, ci}Nc

i=1, where xi, yi, ci represent the image ID,
identity ID and camera ID of a person respectively. Then
we integrate all the cameras together and set a global ID by
adding up the identity IDs of each camera, G {1, 2, . . . , N}
where N =

∑C
i=1 Ni. For convenience, we use q to represent

a query in a batch, with its global ID denoted as g, Cg

represents to the camera that the global ID g belong to.

1) Intra-camera Learning: Since there is a significant
difference in the data between the cameras, the model can
easily identify negative samples from different cameras. As a
result, the model will learn the camera style difference, which
is not conducive to eliminating the camera style difference.
To solve this problem, each camera is regarded as a fully
supervised task separately, and Camera-Specific Contrastive
Learning is used for intra-camera learning. That is, each
camera is assigned a memory bank, denoted as Mc. At the
beginning of each epoch, the data in the memory bank is
initialized by creating C tensors of shape Yc × F based on
the number of cameras C, where F represents the feature
dimension. After that we initialize each row of each tensor
separately to the average feature of all instance images of
each class in each camera.



During training, each camera’s memory bank is updated
by an exponential moving average during backpropagation,
as follows:

Mc[i] = mMc[i] + (1−m)q[i], (1)

where i ∈ {1, 2...Yc} , m is the momentum coefficient, we
set it to 0.1 to make the memory bank get more new features.

The intra-camera loss are the same as Precise-ICS [30],
using the data of each camera individually for the super-
vised training of the model. The camera-specific contrastive
learning (CSCL) loss function is as follows.

LCSCL = −
C∑

c=1

1

nc

∑
qc∈Qc

log
exp( 1

τ1
qc ·M+

c )∑Yc

i=1 exp(
1
τ1
qc ·Mc[i])

, (2)

where qc represents the query from camera c. Each mini-
batch consists of n encoded queries Q = {qi|ni=1}, and can
be further divided into multiple subsets Qc =

{
qic|

nc
i=1

}
based

on the camera. M+
c is the positive centroid in camera c of the

positive class and τ1 indicates the temperature coefficient.
And the hard sample loss is used to enhance the recogni-

tion ability of the model. The loss function is as follows:

LIntra Hard =
C∑

c=1

∑
qc∈Qc

[max d(qc, pc)−min d(qc, nc) +m1]+

+ [d(qc,M
+
c )−min

i̸=t
d(qc,Mc[i]) +m1]+,

(3)

where, d(x, y) represents the cosine distance between x and
y. pc represents positive samples from camera c in the batch,
while nc represents negative samples from camera c in the
batch. t is the label for the qc.

The loss during intra-camera learning can be written as:

LIntra = LCSCL + LIntra Hard. (4)

2) Inter-camera Learning: In order for the model to learn
the features under different cameras, inter-camera learning
is also performed. Identity association should be performed
first before inter-camera learning, because there is no cross-
camera identity annotation in ICS. For cross-identity asso-
ciation, we also adopt the method in Precise-ics [30], but
the difference is that we do the association in each epoch
to facilitate the application of pseudo-labels for subsequent
inter-camera learning.

In intra-camera learning, we have obtained the memory
bank under different cameras. As mentioned before, there
will be multiple different camera centroids in the same
person. Therefore, for inter-camera learning, we concatenate
the memory bank tensors of different cameras to obtain
the tensor M of N × F , and use the positive centroids
of the query as positive samples, while negative centroids
as negative samples for inter-camera contrastive learning
(ICCL).

LICCL =

− 1

S

∑
i∈G+

log
exp( 1

τ1
q ·M [i])

exp( 1
τ1
q ·M [i]) +

∑
j∈G− exp( 1

τ1
q ·M [j])

,

(5)

Fig. 3: Camera-Based Contrastive Learning. Where different
colors represent different cameras, circular shapes represent
the features of the images, and stars represent the camera
centroids. Moving the query away from its original camera
and closer to other cameras to reduce inter-camera gaps.

where G+ represents the set of global IDs of the positive
centroids of the query, S is the number of elements in G+,
and G− represents the set of global IDs of the negative
centroids of the query.

Similar to intra-camera learning, we also add a hard
sample loss.

LInter Trihard =
∑
q∈Q

[max d(q, p)−min d(q, n) +m2]+,

(6)
where, p and n respectively represent the positive and
negative samples in the batch.

B. Camera-Based Contrastive Learning

The previous MCCN has achieved good results on ICS, but
it still has some room for improvement in contrastive learning
of inter-camera learning. As can be seen from the previous
description, we obtained Na camera centroids through intra-
camera learning, and these camera centroids have different
combinations of person and camera labels. Among them,
camera centroids with the same pseudo-label will also have
large differences, which is because they are the same person
but come from different cameras. Inspired by MCRN [34],
multiple camera centroids within the same group of people
can also be regarded as multi-centroid. Since during intra-
camera learning, the camera centroid from the same camera
as the query already contains information of the query, there
is less information to learn about intra-class diversity. Similar
to MCRN [34], we propose a Camera-Based Contrastive
Learning (CBCL), where we do not consider this camera
centroid as a positive sample.

Due to the characteristics of ICS, we only consider the
camera centroids that are not in the same camera as the query
as positive samples. This method can also avoid overfitting
the model within the same camera and make the query closer
to positive samples from other cameras, as shown in Fig.3.
Therefore, our inter-camera contrastive learning loss function
is similar to ICE [2], but with the addition of negative sample



selection. It can be written as:

LCBCL = − 1

S′

∑
i∈G+,i̸=g

log
exp( 1

τ1
q ·M [i])

Zi,g
, (7)

Zi,g = exp(
1

τ1
q ·M [i]) + exp(

1

τ1
q ·M [g])

+
∑
j∈G−

exp(
1

τ1
q ·M [j]),

(8)

where g is the global ID of the query and S′ is the count of
global IDs in G+ that are not equal to g.

C. Intra-Person Camera Adversarial

Based on the fine-grained characteristic of ReID, we
inspired by CAL [12] and propose an adversarial method
for learning camera-agnostic features across different camera
views of the same person. This method can encourage
the model to mine person-invariant features and prevent
the interference of negative samples in traditional domain
adversarial methods.

We first establish a classifier P with N classes, where
each class corresponds to a global ID and we refer to it
as the global ID (GI) classifier. We use global ID as the
class because in ReID data, each image has two labels, one
for the person and one for the camera, and we want the
classifier to learn features for both the person and the camera.
Therefore, as long as the labels for the person or the camera
are different, they are classified into separate classes. In the
global ID, the combination of person and camera labels in
each class is different. Therefore, training the classifier with
global ID as the class enables it to have both person and
camera discrimination capabilities at the same time.

During the training phase of the global ID classifier, we
apply L2 normalization to the model’s output feature f ,
and then detach it before inputting it into the global ID
classifier, we denote the output of the classifier as GI(f).
The purpose of detaching is to prevent the training of the
classifier from affecting the model, as this classifier will
classify images of the same person taken from different
cameras into different classes (as shown in Fig.4), while our
goal is to make the model output similar features for the same
person across different cameras. We then use cross-entropy
loss to train the GI classifier, with the loss function defined
as LGI(GI(f), G), where LGI represents the cross-entropy
loss and G is the global ID. The loss can also be written as:

LGI = − 1

n

∑
q∈Q

log
exp

(
1
τ2
q · φg

)
∑Na

i=1 exp
(

1
τ2
q · φi

) , (9)

where q represents the query sample in the batch, g is the
global ID of the query sample, φ denotes the parameters of
the classifier.

Since the classifier is trained with the global ID as the
label during the training phase, the classifier that we obtain
can distinguish between different camera views of the same
person. However, our goal is to make the features of the

Fig. 4: The process of training a GI classifier and the
adversarial relationship between the model and the classifier.
The dashed line represents detaching the features before
inputting them into the classifier during the training phase.
Subsequently, the classifier outputs q ·φ and uses the global
ID as the positive class to train the classifier, enabling
it to distinguish images of the same person captured by
different cameras. During the adversarial phase, the features
are directly inputted into the classifier and get q · φ. Then
all classes that have the same pseudo-label as the query are
considered positive examples for training. This allows the
model to deceive the classifier and establish an adversarial
relationship. Where + indicates positive class and - indicates
negative class.

same person across different camera views output by the
model similar, which means that this classifier should only
distinguish between different persons, but not which camera
the person is captured by. This creates an adversarial learning
scenario between the model and the classifier, where the
model tries to produce features that can mislead the classifier,
while the classifier tries to accurately distinguish between
different camera pictures of the same person. Due to the fact
that the number of classes in the classifier is equal to the total
number of global IDs, it includes the classes of the same
person captured by different cameras. Unlike the training
phase, during adversarial training, all classes that share the
same pseudo-label as the query, i.e., the classes of the same
person captured by different cameras, are considered as the
positive class (as shown in Fig.4).

While enhancing the model’s recognition performance
across different cameras is important, it is equally crucial
to prevent the decrease of model’s recognition ability under
the same camera. To achieve this, we assign higher weights
to the global ID class that query is in during the adversarial
training, which serves a similar purpose as increasing the
same clothing recognition capability in CAL, so we use
the same coefficients α as CAL. The corresponding loss
function, denoted as LIPCA, is defined as follows:

LIPCA =

−
∑
i∈G+

αi log
exp

(
1
τ2
q · φi

)
exp

(
1
τ2
q · φi

)
+

∑
j∈G− exp

(
1
τ2
q · φj

) ,
(10)



αi =

{
1− ϵ+ ϵ

S if i = g
ϵ
S if i ̸= g

, (11)

where, g represents the global ID of the query.
To further address the previous issue, we added margin-

based softmax [10] to the global ID class of the query to
enhance its recognition ability. The GI classifier tends to
classify the query into classes that have the same camera
label as the query. This is due to the similarity in camera
style among images captured by the same camera. Conse-
quently, classes with the same camera label as the query
have a higher probability than classes with different camera
labels. Therefore, we introduced a weighting method in face
recognition [33] to emphasize the classes of the same camera
as the query in the adversarial process, in order to reduce the
probabilities of the classifier for these classes. Since q·φi can
also be written as cos(θq,φi

), θ represents the angle between
the classifier φi and the feature vector q, our final formula
is:
LIPCA 2 =

−
∑
i∈G+

αi log
Hi

Hi +
∑

j∈G− βj exp
(

1
τ2

cos(θq,φj
)
) , (12)

Hi =

exp
(

1
τ2

cos(θq,φi
+margin)

)
if i = g

exp
(

1
τ2

cos(θq,φi)
)

if i ̸= g
, (13)

βj =

{
exp

(
1
τ2
t
(
cos(θq,φj

) + 1
))

if Cj = Cg

1 if Cj ̸= Cg

, (14)

where Cj is the camera label corresponding to the global ID
j, and Cg is the camera label corresponding to the query. t
is a hyperparameter.

1) Different with CAL: We propose an Intra-Person Cam-
era Adversarial loss inspired by CAL [12]. Our approach
differs from CAL in both purpose and formula: (1) CAL
aims to extract clothing-irrelevant features, while our goal is
to encourage the model to extract camera-irrelevant features.
(2) We further improve upon our approach by introducing a
weighting method in face recognition [33] to emphasize the
classes that have the same camera label as the query.

Finally, integrating the losses in intra-camera and inter-
camera, we can obtain the final loss of our model:

L =LIntra + LInter Trihard+

1

n

∑
q∈Q

LCBCL +
1

n

∑
q∈Q

LIPCA 2.
(15)

IV. EXPERIMENT

A. Dataset and Evaluation Metrics
We assessed the effectiveness of our approach on three

large-scale datasets, Market1501, DukeMTMC-ReID, and
MSMT17, using commonly used evaluation metrics for
ReID, Cumulative Matching Characteristic (CMC) and mean
Average Precision (mAP). To replicate ICS application
scenarios, we generated intra-camera labels based on the
complete annotations of the datasets and conducted our
experiments using the newly generated labels.

TABLE I: Ablation experiments on the method we proposed.

Methods Market1501 DukeMTMC-ReID MSMT17
mAP R1 mAP R1 mAP R1

MCCN 85.6 93.5 74.6 86.9 44.6 72.4
MCCN+CBCL 86.0 94.0 75.7 87.4 47.7 75.7
MCCN+IPCA 85.9 94.1 75.1 87.1 45.9 74.1

MCCN+IPCA 2 86.4 94.2 75.7 87.2 46.8 75.4
MCCN+CBCL+IPCA 87.2 94.5 76.5 88.1 48.8 77.0

MCCN+CBCL+IPCA 2 87.5 94.8 76.6 88.2 49.2 77.2

B. Implementation Details

We used a ResNet50 [14] pre-trained model on ImageNet
[25] as our backbone. We replaced the sub-modules after the
4th layer with a GEM [23] pooling as the same in Cluster
Contrast [9], followed by batch normalization [16] and L2
normalization.

Images are resized to 256× 128. For training images, we
perform random flipping, cropping, and erasing. We use the
Adam optimizer to train the ReID model with a weight decay
of 5e-4. The initial learning rate is set to 3.5e-4 for the first
10 epochs and a warm-up scheme is used. Then, the learning
rate is lowered to 1/10 of its previous value every 20 epochs.
We train the model for a total of 50 epochs on Market1501
and DukeMTMC-ReID, and 60 epochs on MSMT17. Similar
to CAL [12], our LIPCA is used for training after the 30th
epoch. On Market1501, we set the batchsize to 64, with
randomly selected P = 8 intra-identities and K = 8 images
for each identity, and train for 408 iterations per epoch.
On MSMT17 and DukeMTMC-ReID, the batchsize is set
to 72, with P = 12 and K = 6, and we train for 800
iterations per epoch on MSMT17 and 400 iterations per
epoch on DukeMTMC-ReID. Following Cluster Contrast [9]
and CAL [12], we set the momentum value m to 0.1, and
the temperature coefficient τ1 and τ2 to 0.05 and 0.0625,
respectively. The margin in Eq.13 is set to 0.7 for the
Market1501 dataset, 0.3 for the DukeMTMC-ReID dataset,
and 0.5 for the MSMT17 dataset. The t in Eq.14 is set to 0.2
in all datasets. At the same time, set m1 in Eq.3 and m2 in
Eq.6 to 0.3. Our method is implemented with PyTorch. For
the Market1501 dataset, we train the model on a RTX 3060Ti
GPU. For the MSMT17 and DukeMTMC-ReID datasets, we
train the model on a GTX 1080Ti GPU.

C. Comparison with the State-of-the-arts

In this section, we compare our model with state-of-the-art
ReID models and it can be observed that in the Intra-camera
supervised model, our model’s performance on most evalu-
ation metrics is higher than that of existing optimal models
on Market1501, DukeMTMC-ReID, and MSMT17 datasets.
Compared to the existing optimal model DCL on the Mar-
ket1501 dataset, our model’s mAP is 1.3% higher, while
on the MSMT17 dataset, the mAP/R1 is 4.1%/2.7% higher.
Compared to the optimal model CDL on the MSMT17
dataset, our model’s mAP/R1 on the Market1501 dataset
is 2.9%/0.8% higher, while on the MSMT17 dataset, the
mAP/R1 is 1.2%/0.9% higher.

We also compared our method with unsupervised and un-
supervised domain adaptation methods, such as unsupervised



TABLE II: Comparison with state-of-the-art methods.

Methods Reference Market1501 DukeMTMC-ReID MSMT17
Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

Fully Unsupervised Methods
MMCL [27] CVPR’2020 80.3 89.4 92.3 45.5 72.4 82.9 85.0 51.4 35.4 44.8 49.8 11.2
SPCL [11] NeurIPS’2020 88.1 95.1 97.0 73.1 82.9 90.1 92.5 68.8 42.3 55.6 61.2 19.1

Cluster Contrast [9] ACCV’2021 92.9 97.2 98.0 83.0 - - - - 62.0 71.8 76.7 33.0
ICE [2] ICCV’2021 93.8 97.6 98.4 82.3 83.3 91.5 94.1 69.9 70.2 80.5 84.4 38.9

PPLR [6] CVPR’2022 94.3 97.8 98.6 84.4 - - - - 73.3 83.5 86.5 42.2
ISE [37] CVPR’2022 94.3 98.0 98.8 85.3 - - - - 67.6 77.5 81.0 37.0

Unsupervised Domain Adaptation Methods
AD-Cluster [36] CVPR’2020 86.7 94.4 96.5 68.3 72.6 82.5 85.5 54.1 - - - -

SPCL [11] NeurIPS’2020 90.3 96.2 97.7 76.7 82.9 90.1 92.5 68.8 53.7 65.0 69.8 26.8
GLT [39] CVPR’2021 92.2 96.5 97.8 79.5 82.0 90.2 92.8 69.2 59.5 70.1 74.2 27.7
IDM [7] ICCV’2021 93.2 97.5 98.1 82.8 84.6 92.2 94.1 71.9 63.6 75.5 80.2 35.4

AdaDC [17] TCSVT’2022 92.9 97.5 98.5 83.2 82.3 91.6 94.4 71.4 60.7 73.6 78.7 32.7
IDM++ [8] arXiv’2022 94.2 97.7 98.5 85.3 84.6 92.2 94.1 73.6 69.5 80.3 84.0 40.5

Fully Supervised Methods
PCB [26] ECCV’2018 93.8 - - 81.6 83.3 - - 69.2 68.2 - - 40.4
BoT [19] TMM’2020 94.4 - - 86.1 86.4 - - 76.4 74.1 - - 50.2

OSNet [40] ICCV’2019 94.8 - - 84.9 88.6 - - 73.5 78.7 - - 52.9
ABD-Net [3] ICCV’2019 95.6 - - 88.3 89.0 - - 78.6 82.3 90.6 - 60.8

Intra-camera Supervised Methods
PCSL [21] TCSVT’2020 87.0 94.8 96.6 69.4 71.7 84.7 88.2 53.5 48.3 62.8 68.6 20.7
ACAN [22] TCSVT’2021 73.3 87.6 91.8 50.6 67.6 81.2 85.2 45.1 33.0 48.0 54.7 12.6
MATE [41] IJCV’2021 88.7 - 97.1 71.1 76.9 - 89.6 56.6 46.0 - 65.3 19.1

Precise-ICS [30] WACV’2021 93.1 97.8 98.6 83.6 83.6 92.6 94.7 72.0 57.7 71.1 76.3 31.3
GCL [32] Access’2021 93.6 97.5 98.4 85.0 86.4 93.7 95.5 75.1 73.4 84.0 87.3 45.6

PIRID [29] ICASSP’2022 91.0 96.7 97.9 79.6 79.6 88.6 91.4 65.4 60.6 73.8 79.3 34.9
CDL [20] TMM’2022 94.0 97.8 98.6 84.6 - - - - 76.3 86.2 89.0 48.0
DCL [15] ICPR’2022 95.1 98.0 98.8 86.2 - - - - 74.5 84.5 87.6 45.1

ours - 94.8 98.1 98.8 87.5 88.2 94.2 95.5 76.6 77.2 86.6 89.3 49.2

Fig. 5: Analysis of the parameter ϵ in IPCA and IPCA 2.

methods: MMCL [27], SPCL [11], Cluster Contrast [9], ICE
[2], PPLR [6], ISE [37], and unsupervised domain adaptation
methods: AD-Cluster [36], SPCL [11], GLT [39], IDM [7],
AdaDC [17]. Our method is also superior to them.

Compared to fully supervised methods such as PCB [26],
BOT [19], OSNet [40], and ABD-Net [3], our method still
has certain competitiveness and outperforms PCB.

D. Ablation Studies

In order to evaluate the effectiveness of each method, we
perform ablation experiments on three datasets. As shown

Fig. 6: The pairwise cosine similarity between different cam-
eras in the Market1501, DukeMTMC-ReID, and MSMT17.

in Table I, our baseline model MCCN has achieved high-
performance. Furthermore, with the addition of CBCL and
IPCA 2, the mAP/R1 improved by 1.9%/1.3% on Mar-
ket1501, 2.0%/1.3% on DukeMTMC-ReID, and 4.6%/4.8%
on MSMT17.

1) Effectiveness of CBCL: We validated the effective-
ness of the CBCL method by adding it to both MCCN



Fig. 7: The first row of the figure shows the activation maps
outputted by the MCCN, and the second row shows the
activation maps outputted by our final model

and MCCN+IPCA, as shown in Table I, when CBCL was
added to MCCN, the mAP/R1 improved by 0.4%/0.5%,
1.1%/0.5%, and 3.1%/3.3% on Market1501, DukeMTMC-
ReID, and MSMT17, respectively. In MCCN+IPCA, the
addition of CBCL resulted in an improvement of mAP/R1 by
1.3%/0.4%, 1.4%/1.0%, and 2.9%/2.9% on the three datasets.
Furthermore, in MCCN+IPCA 2, the addition of CBCL led
to an improvement of mAP/R1 by 1.1%/0.6%, 0.9%/1.0%,
and 2.4%/1.8% on the respective datasets.

2) Effectiveness of IPCA: As shown in Table I, we can
see that IPCA shows improvements in both MCCN and
MCCN+CBCL. After adding IPCA to MCCN, mAP/R1
is improved by 0.3%/0.6%, 0.5%/0.2%, and 1.3%/1.7%
on the three datasets respectively. And after adding IPCA
to MCCN+CBCL, mAP/R1 is improved by 1.2%/0.5%,
0.8%/0.7%, and 1.1%/1.3% on the three datasets respectively.
At the same time, it can be seen that IPCA 2 is better than
IPCA in all cases. Using IPCA 2 on MCCN, mAP/R1 is
improved by 0.5%/0.1%, 0.6%/0.1%, and 0.9%/1.3% more
than IPCA on the three datasets respectively. Using IPCA 2
on MCCN+CBCL, mAP/R1 is improved by 0.3%/0.3%,
0.1%/0.1%, and 0.4% 0.2% more than IPCA on the three
datasets respectively.

3) The influence of ϵ in IPCA: In this section, we dis-
cussed the important parameter ϵ in the IPCA and IPCA 2
methods, which is mainly used to balance the model’s cross-
camera recognition ability and recognition ability within the
same camera. When ϵ is larger, the model focuses more on
cross-camera recognition ability. From the graph, it can be
seen that IPCA 2 has higher performance than IPCA, and its
optimal parameter for ϵ on Market1501, DukeMTMC-ReID,
and MSMT17 is 0.8, 0.8, and 1, respectively.

E. Qualitative Analysis

1) Visualization of Cosine Similarity between Cameras:
Following Bai et al. [1], we compared the similarity between
camera domains in each dataset to further verify the role
of CBCL in reducing the gap between camera domains.
We used the cosine similarity between the average features
of each camera in the dataset as a measure of similarity.
From Fig.6, it can be seen that CBCL effectively reduces the
distance between multiple camera domains and reduces the
average distance (which means increasing their similarity),
thus proving the effectiveness of CBCL in reducing the
gap between camera domains. Similarly, after incorporating
IPCA 2, the cosine similarity between most cameras has
improved, and the average similarity has also increased.

Therefore, this also proves the effectiveness of the IPCA 2
method.

2) Visualization of Feature Maps: In order to better
understand the impact of incorporating two methods on
the model, we visualized the activation maps of the model
before and after adding the two methods in Fig.7. From
the maps, we can see that our method pays more attention
to the pedestrians themselves, effectively eliminating the
interference of the background environment, and the model’s
attention is mainly focused on the target pedestrian. For
example, as shown in the second and third columns, we
can see that the final model is more accurate in recognizing
the outline of pedestrians, compared to the MCCN, it can
accurately separate pedestrians from complex backgrounds,
and after adding the two methods, it can remove the irrelevant
background information that the MCCN pays attention to.

V. CONCLUSION

In this study, we developed a high-performance ICS ReID
model called MCCN based on existing ICS models. Based
on this, we propose a Camera-Based Contrastive Learning
method that further improves the model. During inter-camera
learning, this method pushes each sample away from its
own camera and pulls them closer to positive samples from
other cameras. This helps prevent overfitting within the
same camera during the learning phase. We also propose
a method that employs adversarial learning between features
of the same individual captured by different cameras. This
method reduces the domain gap between cameras and avoids
the impact of traditional domain adversarial approaches on
recognition performance. The experimental results on the
three datasets confirm the effectiveness of each of our
methods, and the final performance outperforms the existing
state-of-the-art methods.

While our method demonstrates significant advantages in
our experiments, there are still certain potential limitations.
The scalability of our method may be challenged when
handling datasets containing a large number of cameras.
Future research can focus on addressing these aspects to
improve the applicability and robustness of the method.
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