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Abstract—There are physiological, hormonal and 
psychological markers that occur early in a procedure involving 
needles. These so-called vasovagal reactions range from feeling 
nauseous, dizzy, to completely passing out. In an early stage, they 
are difficult to measure and self-report before it is too late to 
prevent them. This study aims to explore different features from 
regular video and thermal facial video recordings of blood 
donors in the waiting room, prior to a blood donation procedure, 
in order to assess to what extent it is possible to predict whether a 
donor will experience a low or high level of vasovagal reaction 
later on during the blood donation. The results showed that the 
best performance was achieved using pre-trained ResNet152 
models with GRU on a continuous video stream, achieving an F1 
of 0.69, a PR-AUC score of 0.81, and an MCC score of 0.56. This 
model also achieved a precision of 0.52, recall of 0.94, F1 score of 
0.67, and MCC score of 0.42 on new, previously unseen mobile 
video data. Although the model requires further improvement, it 
outperforms self-reported vasovagal reaction scores and shows 
the potential to predict who is at risk of experiencing vasovagal 
reactions using facial video data. 

I. INTRODUCTION 

Needle-related procedures are essential part of medical 
treatment, however, people who are afraid of needles during 
such procedures often experience so-called vasovagal reactions 
(VVR) including sweating, breathing rapidly, vomiting or 
fainting. Experiencing VVR symptoms often results in some 
people avoiding medical procedures, for example, 
noncomplying with vaccinations, refusing blood tests or dental 
care [1-2]. In bloodbanking, needle fear is one of the main 
reasons given by young people for not donating blood [3] or 
after experiencing VVR – not returning to donate [2]. 
However, ensuring a sufficient number of blood donors is 
crucial for every blood bank given that only around 5% to 8% 
of eligible people donate blood in Western countries [4].  

One of the issues in preventing VVRs is that they are 
difficult to self-report and occur suddenly. Some vasovagal 
reactions are the result of excessive arousal and anticipated 
negative emotions which triggers unconsciousness underlying 
processes of an autonomic nervous system, which manifests in 
increased heart rate [5-6], sweating, nausea, pupillary dilation, 
hyperventilation [7-8], or sudden drop in blood pressure [5]. 

Although there are multiple patient and donor characteristics 
that are related to who is at risk of experiencing VVR besides 
needle fear, such as younger age, being female, having a lower 
BMI [9-11], the main interventions that have been applied to 
date such as muscle tension techniques or water ingestion are 
geared towards a blood donation setting, targeting donors who 
experience VVRs due to loss of blood, but not due to arousal or 
negative emotions [1-2; 11-12]. However, previous studies [13-
15] showed that there are physiological, hormonal and 
psychophysiological markers that already occur automatically 
and unconsciously prior to or at a very early stage of blood-
related procedure, peaking around the time of needle insertion. 
It is unlikely that the current interventions address these 
affective physiological processes and furthermore, 
interventions for e.g. regular blood draws and injections are 
also scarce.  

One of the solutions for early preventions of VVRs could 
be to continuously monitor physical and psychological states 
using psychophysiological techniques. Many features such as 
heart rate, heart rate variability, respiratory signals, skin 
conductance, or even brain wave measures with EMG or EEG 
could be useful targets for detecting early signs of VVRs and 
tracking them over time [16-18]. However, any needle-related 
procedures are short, and using any additional devices such as 
electrodes, EEG caps or respiratory vests are not feasible in 
real-life scenarios. On the other hand, video recordings are 
readily available, cheap, contactless, easy to record, and also 
contain rich information about facial expressions [15, 19-21], 
head movements, eye-gaze directions, changes in facial colour 
that can be extracted from the face [22-23], and even 
potentially can help to monitor physical changes real-time such 
as heart-rate or respiratory signal [25-27]. Additionally, a non-
invasive technique called Infrared Thermal Imaging (ITI) 
allows the measurement of minute local changes in the human 
body temperature that can be influenced by changes in 
sympathetic and parasympathetic activities [28-30]. Previous 
studies showed that both regular RGB videos and thermal 
recordings performed well in automatically detecting stress 
[29-30], pain response [31], or recognizing emotions in real-
time [32], for example, by using extracted facial action units 
using machine learning (ML) [33]. 



 
 

 

Similarly, our study aims to apply similar ML techniques on 
various video streams extracted prior to needle-related 
procedure to assess whether it is possible to classify who is at 
risk of experiencing high or low VVR symptoms at the later 
stage of the donation. We aim to start from classical approach 
by extracting AU and other facial features, and then comparing 
to more advanced methods while incorporating temporal 
features (e.g. using LSTM or GRU). If successful, we aim to 
detect the earliest possible markers of VVRs, which could be 
implemented into biofeedback mechanism as a prevention 
strategy. So far, biofeedback training offered a promising 
avenue for treating anxiety and stress [34]. The main advantage 

is that such training based on visual facial information can be 
implemented in the mobile phone applications as shown in 
other examples [35, 36]. Therefore, this study is a first step to 
assess whether such solution is feasible using high-definition 
video data and whether it can be replicated using mobile video 
data. 
 

II. METHODS AND MATERIALS 

A. Recruitment of participants 

Participants were recruited from the regular blood donor 

Fig. 1. Overview of the donation procedure, video and thermal data preprocessing steps. 

 
Fig. 2-A. Distribution of VVR ratings per donation stage and donor group. The dots above the box represent the outliers per group. The black line 
represents the mean VVR scores. Fig. 2-B. Variation in total VVR scores (during and after the blood donation, stages 4 - 7) per donor group. VVR 
symptoms consist of faintness, dizziness, weakness and lightheadedness, fear, stress, tension, and nervousness. The line in the box represents the mean of 
each donor group and the dots above the box represent the outliers per donor group.   



 
 

 

pool from the not-for-profit organization responsible for the 
blood supply and distribution. The study was approved by the 
Research Ethics and Data Management Committee of the 
Tilburg university and the Ethical Advisory Board of the 
Sanquin. The study took place at four blood collection centers. 
All blood donors who fit into the following three groups were 
invited to participate: (1) control group; with between 5 to 10 
previous donations, no previous experience of vasovagal 
reactions, (2) the sensitive group; with 5 to 10 previous 
donations but with the experience of a VVR at the previous 
donation, and (3) new donor group; first-time donors. 

B. Procedure 

Interested donors were contacted by the data manager for 
an appointment, and received information about the study, 
including ethical consent information. On arrival, participants 
completed a questionnaire containing items regarding needle 
fear and emotional states. This also served to stabilize the 
body temperature required for thermal imaging (T = 20-25 
min). Then, the donors proceeded with the regular blood 
donation procedure, containing several distinct phases: 
registration, a health check at the donor physician, and blood 
donation. This resulted in seven distinct stages during which 
thermal, RGB videos and vasovagal reaction scores were 
recorded (fig. 1) 

C. Materials and measures 

Video and ITI recordings. The RGB video was recorded at 
24 frames per second using the Nikon Coolpix AW130. 
Thermal video was recorded at 30 frames per second using a 
FLIR E95 camera with a thermal sensitivity of <40 mK at 
30°C, an infrared resolution of 464 x 348 pixels. Both cameras 
were installed on a tripod at a distance of about 1m from the 
donor. Donors were free to behave as they normally would 
throughout the procedure. 

Vasovagal reactions (based on the Blood Donation 
Reactions Inventory; [39]). At each of the seven stages, 
participants were asked to verbally rate to what extent they 
experienced physiological (faintness, dizziness, weakness, 
light-headedness) and emotional (fear, stress, tension, and 
nervousness) reactions, on the Likert scale from 1 (not at all) 
to 5 (extremely). The ratings of the last four stages (4-7) were 
summed, resulting in a score between 32 and 160. Then, we 
split the sample into a low VVR score (below the mean) and a 
high VVR score (above the mean). Since our sample is highly 
skewed, this his cut-off was selected to capture as many 
donors who may be at risk of experiencing VVR as possible. 

D. Thermal video data preprocessing 

The ITI data from the first stage prior to the blood 
donation (N frames = 1000) were preprocessed. For each 
frame, a visual representation of the face (.jpg) was exported 
as well as raw temperature values of each pixel. To estimate 
facial landmarks and track the face over time, we used the 
Face Alignment Network (FAN) [40]. The FAN received a 
thermal image file as input and produced the corresponding 

2D landmarks and 2D projections of the 3D landmarks as 
outputs. Then the images were aligned in such a way that the 
features detected in one image would match the features in the 
following frame. Hence, all temperature values would be 
extracted from the same location. To achieve that, the frontal 
image was selected as a template and using the coordinates of 
the facial landmarks detected in each frame, a Warp Affine 
transformation technique was applied to warp each thermal 
image to fit this template. Next, we re-created each thermal 
image as a frontal one by pasting calculated triangles from our 
original image into our template image. The same procedure 
was completed for both a visual image and a raw temperature 
file. Finally, the following six regions of interest (ROI) were 
selected: nose, below the nose, cheeks, chin, and the area 
between the eyes from which  the maximum temperature value 
at each frame for each participant was extracted (fig. 1). 

The Tsfresh package [41] was used to extract the following 
48 linear time series characteristics from each of the six facial 
areas such as the maximum, minimum, median, standard 
deviation, variance, mean, sum, and root mean square values. 

 
E. Video data preprocessing  

We used video data from the first stage, prior to the blood 
donation. Each video was shortened to 10 seconds and then 5 
seconds from the beginning to test whether the length of the 
video would have an impact on the model performance. 
Redundant frames were eliminated by reducing the frame rate 
to 5 frames per second, with each frame having a resolution of 
1920 x 1080 pixels (fig.1).  

Each video frame served as an input that was passed to the  
pre-trained model, after it was resized to fit the default size of  
the models, specifically 299x299 for Xception [42] and 
224x224 for ResNet152 [43]. Both pre-trained models 
returned vectors containing extracted features of size 2048, 
which were then used to train LSTM and GRU models. 

 

F. Facial action unit extraction from video data 

For extracting the intensity of the facial action units, we 
pre-processed video data from the first stage prior to the blood 
donation (N frames = 1000; fig.1). In particular, the intensity 
level of 17 action units at each frame were extracted using 
OpenFace [22]: AU1 (raised inner brow), AU2 (raised outer 
brow), AU4 (lowered brow), AU5 (raised upper lid), AU6 
(raised cheeks), AU7 (tightened eye lids), AU9 (wrinkled 
nose), AU10 (raised upper lip), AU12 (pulled lip corner), 
AU14 (dimples formed), AU15 (lowered lip corners), AU17 
(raised chin), AU20 (stretched lips), AU23 (tightened lips), 
AU25 (lips apart), AU26 (jaw drop), AU45 (blink). AU 
intensity shows how intense the activity of the AU is, ranging 
from a minimal value of 0 to a maximum value of 5.  

Then, using the Tsfresh python package [41], 6 features 
from each of the AUs (sum, variance, standard deviation, 
maximum-, mean-, and mean root square values) were 
extracted, resulting in a total number of extracted features of 
102. 



 
 

 

 
G. Questionnaire data 

In this study we accessed emotional and physiological 
states of the donors prior to the blood donation (fig. 1) using 
the following questionnaires. The scores were used as features 
for the ML models:  
 Anxiety Sensitivity Index (ASI; [44]). a 16-item scale 

developed to measure 'fear of fear,' that is, the degree to 
which a person believes that physical symptoms of anxiety 
have negative consequences.  

 Emotion Regulation Questionnaire (ERQ; [45]). A 10-item 
scale designed to measure respondents' tendency to 
regulate their emotions in two ways: (1) Cognitive 
Reappraisal and (2) Expressive Suppression. Cognitive 
reappraisal is a strategy that changes the emotional 
experiences and meaning of the situation without changing 
the situation objectively. Expressive Suppression is the 
strategy that intends to hide or reduce ongoing emotions 
and emotion-expressive behaviour.  

 Somatosensory Amplification Scale [46], a 10-item scale 
designed to measure the tendency to detect somatic and 
visceral sensations and experience them as unusually 
intense or disturbing.  

 Multidimensional Assessment of Interoceptive Awareness 
(MAIA (Version 2); [47]). A 37-item state-trait scale 
designed to measure multiple dimensions of interoception 
– the sense of the internal state of the body – by self-
report. The MAIA consists of eight scales labelled as 
Noticing, Not-Distracting, Not-Worrying,  Attention 
Regulation, Emotional Awareness, Self-Regulation, Body 
Listening, and Trust.  

 
H. Model training, validation, and evaluation 

Each dataset was split into a train (80%) and test (20%) 
set, on which the model performance was assessed.  

For training machine learning models such as decision 
tree, random forest classifier, XGBoost [48] and artificial 

neural network, the input features were scaled using min-max 
normalization. Then, due to the class imbalance (high class = 
28% in total dataset), Synthetic Minority Oversampling 
Technique (SMOTE) [49] was applied to the training set. We 
used a nested k-fold cross-validation with an outer k value of 
10 and an inner k value of 3. The inner loop was used for 
feature selection using the Recursive Feature Elimination with 
cross-validation (RFECV; [50]) and hyperparameter tuning 
using GridSearchCV [51]. The outer loop was used for error 
estimation i.e. how well our classification algorithm performs.  

Prior to training the LSTM and GRU models, the data was 
augmented to address the imbalance issue (high class = 28% 
in total) by applying horizontal flip and adding some noise to 
the minority class videos, in the training set only (Video 
Augmentation Library; [52]). After splitting the data into 
training and test sets, a validation split to automatically 
reserve the fraction of the training data was used to evaluate  
the loss and model metrics at the end of each epoch. Twenty 
percent of the computed data was selected by taking the last 
20% of the samples of the video sequences received by the 
model. The architecture of both the GRU and LSTM consisted 
of two GRU or LSTM layers and a dropout layer as it 
previously showed yielding best results [53]. Adam was 
chosen as the optimizer, with a learning rate of 0.0001, as this 
is computationally efficient and suitable for a model with 
many parameters [54]. The selected activation function was a 
sigmoid that produces a number between zero and one, where 
everything below 0.5 is classified as negative and above as 
positive. The binary cross entropy was specified as a loss 
function where the target of predictions is zero or one and is 
using the sigmoid as the activation function for making these 
predictions [55]. The batch size and number of epochs were 
tested empirically.  
 As our baseline model, we used the self-reported pre-
donation VVR scores from stage 1 and stage 2 as model input. 

All described models were evaluated on the following 
metrics: 

 
 

Fig. 3. Distribution of the  VVR sumscores (over the post- donation stages 4-7). The black dashed line represents the mean-based cut-off of the sample on 
which the low vs high VVR groups were split.    

 



 
 

 

 Precision – a ratio of positive predictions (donors with 
high VVR) that are actually correct.  

 Recall – the ratio of actual positives (donors with high 
VVR) that were predicted correctly.  

 F1 score, which is the harmonic mean of precision and 
recall. 

 AUC-PR score, which is the Area Under the Precision-
Recall Curve that summarizes a precision-recall curve as 
the weighted mean of precisions over all recall values.  

 Matthews correlation coefficient (MCC) that is a balanced 
method to measure whether there is a high agreement 
between predicted and actual values. The MCC ranges 
from -1 (total disagreement) to 1 (perfect agreement) with 
0 showing that prediction is no better than chance. 
Lastly, to evaluate which regions in the face are important 

for prediction of the best performing classification model, 
model performances after parts of the face (e.g. eye region) are 
occluded were assessed [56]. If model performance drops after 
the occlusion is applied, that region is considered to be 
important. 

III. RESULTS 

A. Participants 

The data was collected from N=310 blood donors of which 
n = 83 were in the control group, n = 63 in the sensitive group, 
and n = 164 were new donors. No significant gender (F(2) = 
2.33, p =.1) or location (F(2) = 0.33, p =.6) differences were 
found between the groups.  

B. Vasovagal reaction levels 

The VVR score distribution was positively skewed with M 
= 39.40, SD = 9.31, median = 36, reflecting a higher 
proportion of blood donors who reported low VVR scores (see 
Fig. 2A, Fig. 3). The sample was split on the mean, into a low 
VVR score group (VVR score <= 40) and a high VVR score 
group (level > 40, see Fig. 3).   

A one-way ANOVA showed a statistically significant 
main effect of the group on the total VVR symptoms during 
stages 4-7 (F(2) = 15.08, p <.001). The control group 
experienced significantly lower levels of VVR levels than the 
first-time donors (p < .01), who in turn had lower VVR scores 
than the donors in the sensitive group (p <.001; see Fig. 2B).   
 

 
 

Fig. 4A. Confusion matrix showing correctly and incorrectly classified low and high VVR samples on the test set using a pre-trained model on 
ResNet152 with GRU on a 25 frames video sequence. Fig. 4B. Correctly and incorrectly classified low and high VVR samples on the test set using the 
pre-trained model on ResNet152 with GRU on a 25 frames video sequence on the original VVR sumscore scale. The dashed line separates low (on the 
left side) and high (on the right side) VVR groups. Fig. 4C. The precision-recall curve on train and test sets using the pre-trained ResNet152 model with 
GRU on 25 frames video sequence.  Fig. 4D. To evaluate which parts of the image are important for classification, some regions were occluded in the 
image (see Ertugrul et al., 2020 [56]): the more F1 score drops (darker shades) after the occlusion, the more important the region is for the classification. 
We applied larger black rectangles (100x100) around the face and smaller rectangles (80x80 and 60x60) within the face region. 



 
 

 

C. Results of classifying low and high vasovagal reaction 
levels 

 Table 1 shows the performance of the algorithms on each 
dataset. Using facial action units (MCC = 0.19; F1 = 0.52) and 
thermal imaging (MCC = 0.30; F1 = 0.50) resulted in the 
lowest performance, whereas the best performance was 
achieved by using continuous video data (MCC = 0.56; F1 = 
0.69; see Fig. 4-C for the precision-recall curve).  

 We used the 2D-CNN pre trained on ResNet152 with GRU 
on 25 frames as our best-performing model to explore 
correctly and incorrectly classified samples (fig. 4A-B). Fig. 
4A-B shows that the model correctly classified almost all 
samples in the low VVR class, but made the majority of errors 
in correctly predicting high VVR samples around the split. 
Furthermore, the results showed that the regions around the 
eyes, lips, chin, and forehead are important for the 
performance of the model (Fig. 4-D). 

 
Table I. Machine learning performance values on the testing set for binary classification (high VVR group = positive class).  
 

Input data 
type 

Model 
(Number of features) 

Precision Recall F1 PR-AUC MCC 

Pre-donation 
VVR scores 
(N low = 51,  
N high = 13) 

XGboost 
(N = 2) 

0.43 0.69 0.53 0.56 0.39 

Decision tree 
(N = 2) 

0.47 0.69 0.56 0.57 0.44 

Random forest 
(N = 2) 

0.47 0.69 0.56 0.67 0.44 

Artificial neural networks 
(N = 2) 

0.47 0.69 0.56 0.68 0.44 

Questionnaire 
data 

(N low = 46,  
N high = 18) 

XGboost 
(N = 14) 

0.53 0.50 0.51 0.49 0.33 

Decision tree 
(N = 14) 

0.52 0.67 0.59 0.70 0.40 

Random forest 
(N = 14) 

0.47 0.50 0.49 0.57 0.28 

Artificial neural networks 
(N = 14) 

0.50 0.72 0.59 0.45 0.40 

Action units 
(N low = 47,  
N high = 16) 

XGboost 
(N = 102) 

0.31 0.69 0.43 0.29 0.15 

Decision tree 
(N = 102) 

0.31 0.50 0.38 0.33 0.10 

Random forest 
(N = 102) 

0.30 0.62 0.41 0.31 0.11 

Artificial neural networks 
(N = 74) 

0.47 0.44 0.45 0.30 0.27 

Thermal files 
(N low = 47, 
N high = 16) 

XGboost 
(N = 48) 

0.39 0.56 0.46 0.43 0.24 

Decision tree 
(N = 48) 

0.39 0.56 0.46 0.53 0.24 

Random forest 
(N = 48) 

0.45 0.56 0.50 0.50 0.31 

Artificial neural networks 
(N = 48) 

0.50 0.62 0.56 0.50 0.39 

Continuous 
video data 

(N low = 44, 
N high = 31) 

2D CNN (Xception) with GRU  
(Number of frames = 50) 

0.66 0.61 0.63 0.71 0.39 

2D CNN (Xception) with LSTM 
(Number of frames = 50) 

0.66 0.68 0.67 0.73 0.43 

2D CNN (ResNet152) with GRU  
(Number of frames = 50) 

0.79 0.48 0.60 0.74 0.44 

2D CNN (ResNet152) with LSTM  
(Number of frames = 50) 

0.75 0.58 0.65 0.75 0.47 

2D CNN (Xception) with GRU  
(Number of frames = 25) 

1 0.39 0.56 0.82 0.52 

2D CNN (Xception) with LSTM 
(Number of frames = 25) 

0.76 0.52 0.62 0.74 0.44 

2D CNN (ResNet152) with GRU  
(Number of frames = 25) 

0.86 0.58 0.69 0.81 0.56 

2D CNN (ResNet152) with LSTM  
(Number of frames = 25) 

0.68 0.61 0.64 0.73 0.42 



 
 

 

D. Cross-domain evaluation on videos from mobile phones  

The results show that it is possible to predict vasovagal 
reactions occurring during the blood donation from high 
resolution continuous video data collected prior to the blood 
donation. However, to test the cross-domain performance, we 
aimed to replicate our findings on a new, previously unseen 
dataset with different characteristics in terms of context and 
range of head pose. We used mobile video data obtained prior 
to a video-based blood donation experiment based on the 
rubber arm experiment [57]. In the experimental condition, the 
illusion of ownership of the arm seen on the screen was 
induced and in the control condition, it was not. For a 
description of this procedure, see [58; 59]). The sample 
consisted of N = 47 (n = 42 female, and after discarding of the 
recordings of n = 3 participants due to technical errors) from 
the university in return for course credit. The participants were 
informed about what would happen during the virtual donation 
and then asked to use a mobile phone for 5 minutes, that 
recorded their face in the background. There were no 
significant differences in demographic characteristics such as 
gender, age, or BMI between participants in the experimental 
and the control group nor between participants who self-
reported suffering from needle fear versus those who did not.  

After the experiment, participants rated the level of VVR 
they experienced during the virtual blood donation using the 
rating scale described before. Also in this experiment, VVR 
scores were positively skewed with a higher proportion of 
participants reporting low VVR scores (M = 15.87, SD = 8.17, 
median = 13.0; min = 8, max = 46; see figure 5). The videos 
were split into two groups on the mean score, representing 
video segments from participants who experienced low levels 
of VVR (N videos= 29, VVR score <=16 and high levels of 
VVR (N videos = 18, VVR level > 16). We included 25 
frames of all videos obtained during this experiment in the test 

set and then applied the previously developed pre-trained 
ResNet152 and Xception with GRU and LSTM classification 
models. The results are reported in Table II. 

Table II. The performance of the pre-trained ResNet152 and 
Xception models with GRU and LSTM on the new dataset obtained 
during the virtual blood donation (N frames = 25). 

Model VVR group Precision Recall F1 MCC 

ResNet15
2 with 
GRU 

Low  
(N =29) 

0.93 0.45 0.60 
0.42 

High 
(N=18) 

0.52 0.94 0.67 

ResNet15
2 with 
LSTM 

Low  
(N =29) 

1 0.03 0.07 
0.12 

High  
(N =18) 

0.39 1 0.56 

Xception 
with 
GRU 

Low  
(N =29) 

0.61 0.38 0.47 
0.009 

High  
(N =18) 

0.38 0.61 0.47 

Xception 
with 

LSTM 

Low  
(N =29) 

0.77 0.34 0.48 
0.19 

High  
(N =18) 

0.44 0.83 0.58 

 

Table II shows that all models performed slightly better in 
classifying high than low VVR groups. In addition, models 
with GRU performed better than LSTM in classifying both 
low and high VVR groups with the most balanced and highest 
performance achieved using ResNet152 with GRU with 
precision of 0.52, recall of 0.94, F1 score of 0.67, and MCC 
score of 0.42. Thus, we further completed the error analysis 
using pre-trained ResNet152 with GRU (fig. 5) to identify 
where the model makes the mistakes in predicting vasovagal 
reactions. 

 
 

Fig. 5. Figure shows correctly (blue color) and incorrectly (red color) classified samples on the test set using 2D CNN pre-trained model on ResNet152 with 
GRU on 25 frames video sequence. The dashed black line separates low (on the left side) and high (on the right side) VVR groups. 



 
 

 

IV. DISCUSSION 

In this study we aimed to assess whether it is possible to 
predict adverse emotional and physical reactions that may 
occur during blood donation from facial information prior to 
the donation, what type of facial features are important, and 
whether this data is more informative than subjective self-
reports or personality factors. 

Related work has shown that self-reported anxiety and fear 
are risk factors for experiencing VVR [2, 9-11, 60]. Similarly, 
our study showed that using the self-reported pre-donation 
VVR scores already provide a relatively good performance, 
with moderate agreement between predicted and actual values 
(MCC = 0.44, F1 score = 0.56). Classification performance 
using the personality questionnaire scores also resulted in a 
similar performance (F1 score = 0.59, MCC = 0.40). However, 
the overall best performing model in our study used the pre-
trained ResNet152 features to classify low and high classes 
with GRU on 25 frames of a digital video recording, resulting  
in an MCC score of 0.56, and a balanced performance with a 
recall score of 0.58 and a precision of 0.86. Additionally, the 
results indicate that the eyes, lips, chin, and forehead areas are 
important for classification, which is in line with previous 
findings that the eye region and movements of the brow play 
an important role in classifying low and high VVR groups 
[15]. Movements of the brow, chin, lips, and even jaw have 
previously been shown to be indicative of stress, [20], and  
cues such as closing the eyes, lowering the brow, tightening 
the eyelids, or parting lips play a major role in the detection of 
pain [21]. 

We expected that ITI data would also reflect the 
underlying emotional and physiological reactions, especially 
as previous studies show that thermal imaging is less 
influenced by the pose variation or lightening [61] and that 
stronger distress can be associated with a decrease in nasal 
temperature [62-64]. Also, ITI can reflect breathing patterns 
and pick up signs of hyperventilation, which is associated with 
anxiety and an increased risk of vasovagal reactions [58; 59]. 
However, the performance using thermal imaging was not 
better than the baseline model using self-reported experience 
of VVR. Using ITI for this purpose is novel, and the role of 
individual differences is yet unclear [30]. In addition, people 
often show increased head movements when in distress [21], 
which can also affect the results since facial action units and 
thermal imaging are affected by rigid and non-rigid facial 
motions [65]. For example, in our study some blood donors 
tend to look away during the needle insertion. However, for 
clinical applications it is a positive finding that ‘regular’ facial 
video data using an affordable camera is a better target for 
predicting vasovagal reactions, achieving the overall best 
performance using a continuous video stream with GRU. This 
is corroborated by similar studies focusing on pain detection 
among others, indicating that measuring pain on a frame-by-
frame basis and taking into account spatial-temporal features 
yield much better results than using static images, overcoming 
many challenges related to capturing spontaneous emotions or 
head movements (e.g. [21]). In addition, facial videos have 
shown to be a good target for measuring emotional states and 
physiological reactions such as heart-rate [24-26] or 
respiratory signals [66-67]. This might be also a promising 
avenue to explore in the future. 

 For clinical versus research applications it is also 
important to consider which model best fits the purpose. For 
the AI driven biofeedback solution for example, that aims to 
detect early signs of VVR in real-time, a model that is faster, 
uses less frames, is less computationally demanding and which 
has a high recall is preferred. In other words, it may be more 
important to be on the side of caution and to correctly classify 
all the individuals at risk for experiencing VVR at the expense 
of incorrectly capturing a few individuals who may actually be 
in the low VVR group. For other applications a higher 
precision or balance may be preferred, for example when the 
intervention is expensive or invasive, and for research 
purposes speed or computational considerations may not be an 
issue. We further validated whether these algorithms may 
work in a clinical setting by using a new dataset consisting of 
lower quality mobile phone video recordings. These were 
collected with the mobile app in mind, as the app uses input 
from the front facing camera, reflecting a real-life scenario 
where participants look to their smartphone screen. Taking 
these differences into account, the classification performance 
was relatively high with 0.52 precision, 0.94 recall, and 0.67 
F1 score. This indicates that the model performs relatively 
well on a new, previously unseen dataset especially in 
capturing the group of people who experience higher levels of 
VVR. Prediction errors mostly occurred around the cut-off 
point. This indicates that the cut-off point may not be the most 
optimal choice for separating low and high VVR groups 
because the same mistakes were observed in training the 
model, and in the future it may beneficial to move away from 
dichotomous classification and instead use a continuous 
prediction. Additionally, we aim to find the best ‘mix’ of trait 
(e.g., a personality scale, self-identification as suffering from 
needle fear), state (e.g., a self-report rating), and video 
features. 

One of the important limitations of our study is that our 
dataset consisted of a majority of blood donors who reported 
low VVR scores. In this study, only 8 blood donors scored 
above 70 points on the VVR scale. Although this is a 
reflection of the overall prevalence rates of VVR in blood 
banking, varying from 1-2% [1], other similar studies on 
anxiety and stress report an increase in model performance 
after including more subjects and more training samples. 
Therefore, acquiring more high VVR examples is preferred 
over relying on data augmentation and SMOTE techniques 
[49].  

 In conclusion, this is the first study showing that it is 
possible to classify vasovagal reactions from facial video data. 
Future work includes improving model performance and 
incorporating the solution into the biofeedback solution.  
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