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Fig. 1. Emotion-controllable audio-driven talking face generation. Our framework enables the synthesis of Emotion-controllable Audio-driven Talking
Faces (EAT-Face). By using learned joint emotion-visual embedding, the EAT-Face can manipulate the facial emotion of the generated talking face based
on the audio and emotion-text input.

Abstract— Audio-driven talking face generation is a promis-
ing task with a lot of attention. Despite abundant efforts are
devoted to video quality and lip synchronization, most existing
works do not take the unignorable aspect of facial emotional
expression into account during generation. In this paper, we
propose an Emotion-controllable Audio-driven Talking Face
generation framework called EAT-Face that enables us to
control multiple types of emotions. Specifically, the proposed
method consists of a Talking Face Reconstructor (TFR) and
a Facial Emotion Controller (FEC), utilizing fused multimodal
information including audio signals, visual images, and textual
emotions for synthesis. Firstly, TFR predicts face images syn-
chronized with given audios from random noises, leveraging
external guidances comprised of audio features, character
references, and face masks as conditions. Then, FEC further
manipulates the facial emotions based on TFR, leveraging the
emotion embeddings extracted from emotion texts. However, a
semantic misalignment problem lies in the emotion-texts and
character images. To tackle this issue, we additionally propose
a strategy called joint Emotion-Visual Embedding (EVE) to
mitigate the misalignment. In this way, the proposed EAT-
Face is captive to control emotion more precisely. Extensive
experiments involving both objective evaluations and subjective
investigations demonstrate the effectiveness of our framework
in synthesizing high-fidelity and emotional talking face videos.

I. INTRODUCTION

Artificial intelligence has achieved excellent performance
in many fields [27][71]. Specially, audio-driven talking face
generation is a challenging but captivating task in the field
of artificial intelligence generation [14], brimming with
potential and promising prospects. Recently, it has been
preliminarily applied in many domains such as virtual anchor
[28][42][61], character re-dubbing [30][67], video conferenc-
ing [66], animation film [73] and so on.
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Previous works have contributed efforts towards the de-
velopment of high-fidelity talking face generation, predom-
inantly relying on Generative Adversarial Networks (GAN)
[11][12]. However, there are certain limitations in the exist-
ing methods. For instance, it is annoying for researchers to
face with instability of GAN’s training. In the flourishing
period of popular artificial intelligence-generated content
(AIGC), the emergence of Diffusion Models (DM) provides
greater freedom and possibilities for AI creation. In compar-
ison with GAN, the advantages of DM are embodied in its
superior training stability, as well as its outstanding visual
effect in many tasks. Recently, several works [2][59][53]
have employed DM for audio-driven talking face generation.

It is worth noting that characters usually talk with certain
emotions in the real world. However, most existing methods
pay more attention to the generation quality and audio-visual
synchronization, while ignoring facial emotional expressions.
Only a few works with GAN attempt to consider this
aspect so far, and the works with DM still overlook the
incorporation of emotions during generation.

The question that stimulates our thinking is how to achieve
emotion control in the generation of DM. Analogous to
the text-to-image tasks, an intuitive solution is to utilize
texts containing emotional words as guiding conditions for
generation. However, we observe that this idea does not
meet the expectations in terms of the strength and effect of
emotion control. We speculate that this issue may arise from
a misalignment problem between emotion-text and image
content. In other words, the entire image content is described
by the text prompt used in DM, while emotion is solely
expressed on the facial region, leading to an insufficient
correlation between them.
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In this paper, we propose a crafted framework called EAT-
Face for the generation of talking faces, aiming to address the
aforementioned challenges. The framework comprises two
pivotal components: Talking Face Reconstructor (TFR)
and Facial Emotion Controller (FEC). Specifically, within
the TFR, we leverage the latent conditional diffusion model
as the foundation for the generation of general faces, i.e.
faces without emotion. Meanwhile, the usage of this module
avoids training complexities associated with GAN. As guid-
ance conditions of DM, the driven audio, identity reference,
and mask are introduced to facilitate audio-visual synchro-
nization, identity preservation, and high-quality generation.
As for the FEC, we devise a shared embedding space that
enables us to obtain learned joint embedding of emotion-
text and visual-image through contrastive learning, which
better alleviates the problem of misalignment. The acquired
joint embeddings are then utilized as emotion conditions
to TFR through an emotion ControlNet for precise facial
emotion manipulation. With these designs, we enhance the
controllability over expressed emotions upon generated faces,
while maintaining the desired high visual quality.

Sufficient experiments demonstrate the controllability of
our method for talking face generation. As shown in Fig.
1, the proposed method effectively generates natural talking
videos with different emotions. Our main contributions are
summarized as follows:

• We propose an Emotion-controllable Audio-driven Talk-
ing Face generation framework based on the diffu-
sion model, called EAT-Face, for synthesizing high-
fidelity, audio-visual synchronized talking face videos
with photo-realistic expressions.

• We design a shared representation space for learning
joint embedding of emotion-text and visual content, bet-
ter improving the alignment between them and leading
to precise emotion control.

• We propose a facial emotion control module to provide
more effective emotional semantic conditions for the
diffusion model.

• Extensive experiment results demonstrate that our pro-
posed method can not only achieve satisfactory and
comparable visual quality to other methods, but also
provide more delicate emotional manipulation of facial
details that are lacking in those methods.

II. RELATED WORK

A. Diffusion Models for Visual Generation
In the field of visual generation, the Denoising Dif-

fusion Probabilistic Model (DDPM) [17] stands as the
pioneering diffusion model, with most subsequent works
[18][41][46][56][58] building upon its foundation. Various
samplers [29][32][56][57][58] are proposed to accelerate
the generation of the diffusion model, among which the
Denoising Diffusion Implicit Model (DDIM) [56] is a typical
method using a deterministic denoising process with fewer
sampling steps.

The Latent Diffusion Model (LDM) [46] transfers the
process of diffusion and denoising from pixel space to latent

space, reducing computational consumption while keeping
the quality of the generated samples. Following this, [9]
demonstrates that diffusion models exhibit significant poten-
tial for beating GAN, which has demonstrated remarkable
achievements across various domains afterward, such as
image super-resolution [18][51], image inpainting [35][49],
text-to-image synthesis [40][45][50], text-to-video synthesis
[16][43][55], 3D point cloud [7][36], and so on.

More recently, re-learning approaches for large models
that focus on different specific tasks alleviate the challenges
associated with training diffusion models. For instance, Low-
Rank Adaptation of Large Language Model (LoRA) [20] is
proposed to learn a specific image style based on existing
diffusion models; ControlNet [70] introduces a trainable
branch copied from diffusion models to support additional
semantic mappings and locks the original weights from
pretrained diffusion models, enabling more delicate control
over synthesized images. Similar works such as [39][48]
further enhance the generation capability of diffusion models.

Inheriting the advantages of LDM and its re-learning
ability, in this paper, we employ the LDM for talking face
generation to achieve high-fidelity synthesis results.

B. Talking Face Generation

Existing works on audio-driven talking face generation
can be roughly divided into three categories according to
the basic backbone they employ, namely based on Genera-
tive Adversarial Networks (GAN), Neural Radiance Fields
(NeRF), and Diffusion Models (DM) respectively.

1) GAN-based Methods: It is prevalent for this task
to employ GAN [11][12][21][23][22], commonly with the
assistance of intermediate representations such as facial land-
marks and 3D facial coefficients. Among the methods based
on landmarks such as [5][26][33][72][60][73], several works
[26][60][33] utilize Recurrent Neural Networks (RNN) [37]
or Long Short Term Memory networks (LSTM) [19] to learn
the mapping from audio to landmark movements. In the
methods of 3D facial coefficients, the 3D Morphable Model
(3DMM) [3] is utilized in [31][68][61][69] to predict facial
parameters for synthesizing talking faces.

2) NeRF-based Methods: NeRF [38] provides another
solution for talking face generation, which is used in AD-
NeRF [15] and DFRF [52] to get better results.

3) DM-based Methods: Most recently, the diffusion
model [17] has provided a brand-new framework for talking
face generation. [59] defines the synthesis as an autore-
gressive task in pixel space, while its generation speed is
constrained. DiffTalk [53] and DAETalker [10] are trained
in a latent space using conditional latent diffusion models.
In [53], DDIM [56] is employed to generate video frames
sequentially during sampling, while [10] proposes an innova-
tive parallel strategy based on DDIM to speed up sampling.

As for emotion control, only a few GAN-based meth-
ods [13][25][26][64] consider this issue. For instance, [25]
proposes an emotion-aware motion model to synthesize
emotional faces, [26] proposes an approach to decouple



Fig. 2. Overview of our EAT-Face framework. It consists of two parts: (1) Talking Face Reconstructor (TFR). The latent diffusion-based reconstructor
takes audio, mask, and identity conditions as guidance to generate high-fidelity talking face frames with general emotion. (2) Facial Emotion Controller
(FEC). The ControNet-based controller takes emotional conditions as guidance to further control facial emotion based on face images synthesized from
TFR. Meanwhile, the module of joint emotion-visual embedding is used to address the misalignment between face image and emotion.

emotional features from audio signals, and [13] focuses on
realistic-looking emotional talking videos generation.

However, no research has yet mentioned how to control
character emotion in DM-based models. In this work, we
propose for the first time to control the emotion in the
diffusion model by using joint emotion-visual embedding as
the guidance condition.

III. METHODOLOGY

A. Overview

Given a reference image xr of a specific character, a
sequence of audio Ar, and an emotion-text e, we aim to
generate video frames x̃ = {x̃1, ..., x̃N}, where x̃i is
the i-th predicted frame that is lip-synchronized with the
audio and corresponding with the emotion while keeping
the original identity. An overview of our proposed EAT-Face
is depicted in Fig. 2. Two main modules named Talking
Face Reconstructor (TFR) and Facial Emotion Controller
(FEC) are included in the framework, which are both utilized
simultaneously to generate images at inference time.

In the coming sections, in section III-B we begin by briefly
reviewing the diffusion model, which is the basis of our EAT-
Face. Then, we respectively detail the architecture of TFR
and FEC in sections III-C and III-D. Lastly, we introduce
the adopted inference strategy in III-E.

B. Preliminary: Diffusion Model

The diffusion model is utilized as the foundation of our
EAT-Face. The pure diffusion model takes the noisy image
x̃t from the previous timestep and the time embedding t
as inputs at each step, predicting the residual noise and
then obtaining the denoised image x̃t−1. The process can
be formulated as:

x̃t−1 = x̃t − ϵθ(x̃t, t), t ∈ {T, ..., 2, 1}, (1)

x̃T ∼ (0, I), (2)

where ϵθ is a trainable denoising UNet [47] model.
The text ctext is usually employed as an additional input

to guide denoising to exert further control over the generated
content or style. The optimization objective of the diffusion
model can thus be mathematically formulated as follows:

Lsimple = Ex,ϵ∼N (0,I),t,ctext
[∥ϵ− ϵθ(x̃t, t, ctext)∥22], (3)

C. Talking Face Reconstructor

In this section, we introduce the Talking Face Reconstruc-
tor (TFR) based on the conditional diffusion model, aiming
to generate audio-synchronized and identity-preserving face
images. Notably, emotion control is not considered within
this part.

Both the diffusion and denoising processes are conducted
in the latent space to enhance training efficiency and reduce
computational overhead, following [46]. We employ the
pretrained encoder E and decoder D from the Variational
Auto-Encoder (VAE) [62] as a bridge connecting latent space
and pixel space. For a face image x ∈ R3×H×W extracted
from a video, where H and W denote the height and width
of the original image respectively, we utilize E to encode it
into corresponding latent image z = E(x) ∈ R4×h×w, where
h and w are determined by a down-sampling f of VAE i.e.
f = H/h = W/w. The diffused zT ∈ R4×h×w obtained
by (1) is then denoised by UNet to yield the predicted
latent original image z̃0 ∈ R4×h×w. We finally obtain the
desired generated image x̃ in pixel space after decoding, i.e.
x̃ = D(z̃0) ∈ R3×H×W .

Here, three extra conditions as elaborated below are con-
sidered to guide the generated face.

1) Audio Condition: The audio condition is introduced as
guidance to drive facial movements, such as lip shape, blink-
ing, muscle orientation, etc. For a raw audio Ar, we firstly
employ the pretrained Wav2Vec [1] model W to extract
its phoneme feature A = W(Ar) = [a0;a1; ...;aS−1] ∈



RS×D, where S is the audio frame length and D is the
feature dimension. To be more concerned about the corre-
spondence between mouth movements and phonemes rather
than the audio characteristics associated with specific char-
acters, we refrain from utilizing conventional audio features
such as Mel-spectrum. It should be noted that the length of
audio frames differs from that of video frames. To maintain
consistency in audio features across a sequence of frames,
a sliding window of size 3 is employed to determine the
audio features for each image frame. Specifically, the audio
features for the i-th frame (i = 1, 2, ..., N ) consist of
[au−1;au;au+1], where u = ⌊S(i− 1)/N⌋, and the vacant
portion is padded with 0 when u = 0 or u = S−1. We sub-
sequently utilize a Fa that is comprised of 1D-convolution
layers and multi-layer perceptron (MLP) to acquire audio
condition embeddings ca from the features. Replacing the
location of prompt text in the original diffusion model, these
embeddings inject audio information into the cross-attention
layer of UNet serving as keys and values.

2) Mask Condition: According to [69], speech audios ex-
hibit not only a strong direct correlation with lip movements
but also an indirect correlation with other facial movements,
so the modification of the whole face is needed. Additionally,
we observe that the facial area shows more variation than
other areas like the background when a character is speaking,
implying that it is unnecessary to manipulate all regions of
the image. Inspired by [35], we introduce a mask condition
to guide the focus area generated. Our approach differs from
previous methods in that we use a mask that covers most of
the face region, instead of just the mouth area [2] or the lower
half of the image [53]. Specifically, we leverage MediaPipe
[34] for facial landmarks detection and select specific points
#127, #151, #152, and #356 to determine the boundary of
the mask, resulting in obtaining a mask image xm. The mask
condition embedding zm is calculated via the VAE encoder,
i.e. zm = E(xm) ∈ R4×h×w.

3) Identity Condition: The identity information of the face
image is almost entirely corrupted after the diffusion process.
To ensure consistency between the generated and original
faces, we randomly select a frame xr from the video as
the reference image to guide denoising. We then acquire the
identity reference condition zr = E(xr) ∈ R4×h×w.

Considering that zt, zm, and zr all represent implicit
spatial images, we adopt the practice in [53] to concatenate
them along the channel as the input for the UNet model,
which can be formulated as follows:

xin = zt ⊕c zm ⊕c zr, (4)

where ⊕ denoted the operation of concatenation. The zm and
zr are consolidated as a visual condition cv = {zm, zr}.

Based on the aforementioned additional guidance condi-
tions, the training objective for TFG is defined as follows:

LTFG = Ez,ϵ∼N (0,I),t,ca,cv
[∥ϵ− ϵθ(z̃t, t, ca, cv)∥22]. (5)

D. Facial Emotion Controller
1) Joint Emotion-Visual Embedding: Inspired from the

contrastive learning in CLIP [44], we design a shared em-

bedding space to acquire the joint emotional representation
of textual emotion and visual image, and we call it joint
Emotion-Visual Embedding (EVE). We train two adapter
networks Av and Ae to map visual images and emotional
texts into an embedding space respectively. Both of them are
composed of multiple alternating convolution layers, max-
pooling layers, and activation layers, and then end with an
MLP.

Firstly, we leverage the CLIP image encoder ECI to en-
code the facial image xe with emotional expression and pass
it to Av , obtaining the visual representation hv ∈ Rhw. Then,
the corresponding emotional text e is encoded by the CLIP
text encoder ECT and we obtain the text representation he ∈
Rhw by Ae. To preserve person-specific identity information
in the text representation, a corresponding emotionless facial
image xr is encoded by Av and fused into he through
weighted addition as an identity-based feature. This process
can be formulated as follows:

hv = Av(ECI(xe)), (6)

he = αAe(ECT (e)) + (1− α)Av(ECI(xr)), (7)

where α denotes the emotion weight. During training, a
minibatch consists of N emotion-visual representation pairs
(he

i ,h
v
i ) and does not contain the same emotion. We aim

to maximize the similarity between emotion-matching pairs
and minimize the similarity between mismatched pairs so
that the emotion-text can be aligned with the corresponding
face image as much as possible. The optimization objective
consists of emotion-to-visual contrastive loss and visual-to-
emotion contrastive loss. For the i-th pair, the emotion-to-
visual contrastive loss is formulated as:

Le→v
i = − log

exp(⟨he
i ,h

v
i ⟩/τ)∑N

k=1 exp(⟨h
e
i ,h

v
k⟩/τ)

, (8)

and the visual-to-emotion contrastive loss is formulated as:

Lv→e
i = − log

exp(⟨hv
i ,h

e
i ⟩/τ)∑N

k=1 exp(⟨h
v
i ,h

e
k⟩/τ)

, (9)

where ⟨a, b⟩ denotes the cosine similarity between repre-
sentation vector a and b, and τ denotes the temperature
coefficient, which is set to 0.2 in our experiments.

For a minibatch, the total loss function for EVE is formu-
lated as:

Le↔v =
1

2N

N∑
i=1

(Le→v
i + Lv→e

i ). (10)

2) Emotion Controlling via ControlNet: For the manipu-
lation of facial emotion, an intuitive approach is to fuse emo-
tion features directly with audio features to guide denoising.
However, we find that such a direct way does not work as
expected in a preliminary experiment. The ControlNet [70]
further enhances the control over the pretrained diffusion
model by various forms of conditions while preserving the
generative capability of the existing diffusion model. Inspired
by it, we particularly adopt a ControlNet, known as Emotion
ControlNet, to achieve emotion control for facial images



TABLE I
QUANTITATIVE COMPARISON WITH OTHER METHODS

Dataset Method w/Emo. Reconstruction Quality Perceptual Similarity Synchronization ID Preservation
PSNR↑ SSIM↑ CPBD↑ LPIPS↓ FID↓ LSE-D↓ LSE-C↑ CSIM↑

MEAD

MakeItTalk[73] 25.7035 0.7914 0.1215 0.1531 50.9649 9.2916 5.3394 0.7648
StyleHEAT[68] 17.9452 0.5063 0.3354 0.2321 195.2083 13.9266 2.3095 0.6000
IP-LAP[72] 32.1435 0.9448 0.2538 0.0458 28.6454 8.8531 6.2697 0.8386
EAMM[25] ✓ 18.1904 0.6312 0.1266 0.2317 122.5730 12.3489 2.7372 0.6010
EmoGen[13] ✓ 16.2721 0.6028 0.3027 0.2304 56.3227 12.1095 2.6248 0.5848

EAT-Face(Ours) ✓ 32.6131 0.9275 0.3803 0.0274 15.7736 9.1911 5.5614 0.8460

CREMA-D

MakeItTalk[73] 23.5662 0.7740 0.1143 0.0756 19.8448 9.4263 3.2461 0.7287
StyleHEAT[68] 19.2144 0.6658 0.0892 0.1309 63.9966 8.8267 3.4079 0.5152
IP-LAP[72] 32.4785 0.9476 0.4725 0.0167 18.5343 7.2367 4.2880 0.7208
EAMM[25] ✓ 19.3724 0.6829 0.2579 0.1487 197.2419 8.3457 3.9349 0.6179
EmoGen[13] ✓ 22.4822 0.7412 0.5154 0.0803 22.5024 7.4055 4.4748 0.7402

EAT-Face(Ours) ✓ 34.3401 0.9325 0.5180 0.0147 9.9181 6.7923 4.6093 0.7562

especially. Different from conditions such as skeleton image
and depth image used in common ControlNet, the Emotion
ControlNet takes EVE as extra semantic control conditions.

Specifically, for the learned EVE which fuses emotion
feature with character visual information, we reshape it into
a 2D feature map and replicate it 4 times along the channel
as the emotion condition ce ∈ R4×h×w. This operation is
performed to suit the dimensionality of ce with that of the
latent space and then correctly convey it to ControlNet as
condition input. The output of our Emotion ControlNet is
subsequently fed into the cross-attention layers of interme-
diate blocks and up-sampling blocks within UNet. During
training, we first train Emotion ControlNet separately while
keeping the weights of other networks frozen. Once the
training is complete, we unfreeze the weight of the UNet
part and fine-tune it through Emotion ControlNet.

To summarize, with the design of our emotion controller,
we fine-tune the diffusion model trained in the previous
section, and the optimization objective is adapted as follows:

L = Ez,ϵ∼N (0,I),t,ca,cv,φθ
[∥ϵ− ϵθ(z̃t, t, ca, cv, φθ(ce))∥22],

(11)
where φθ denotes the trainable Emotion ControlNet.

E. Sampling

In the inference phase, our EAT-Face receives a reference
image xr, an audio clip Ar, and an emotion-text e as inputs,
and then outputs a sequence of image frames. Note that the
mask condition xm is obtained automatically, and the xe

used in the training phase is no longer used during inference.
The text undergoes sequential processing through the CLIP
text encoder, trained adapter Ae, and Emotion ControlNet
to obtain emotional condition, which is utilized for guiding
UNet denoising. We conduct generation with DDIM [56],
which yields high-quality samples with fewer iterations com-
pared to DDPM [17]. Following the practice of [10], we
adopt parallel sampling instead of progressive sampling to
accelerate the generation process. Specifically, all the image
frames in a certain video are initialized with a shared state,

i.e. the same noise zT ∼ N (0, I), resulting in continuous
changes when conduct sampling in parallel. Additionally, the
frame interpolation technology [24] is utilized for inter-frame
smoothing in the post-processing stage to effectively address
potential issues such as frame skipping and jitter.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset: In our experiments, we utilize two emo-
tional audio-visual datasets: MEAD [65] with 8 emotions
and CREMA-D [4] with 6 emotions. For MEAD, videos
with medium-intensity emotion and a front-camera view
are specifically selected for our experiments. We randomly
sample 1,472 videos from this subset for training and testing,
resulting in approximately 93k and 94k human images in the
training and test datasets, respectively. For CREMA-D, we
randomly sample 1,820 videos, resulting in approximately
68k and 62k human images in the training and testing
datasets.

2) Data Preprocess: The original videos are cropped into
square size with the character’s face centered. Subsequently,
image frames are extracted at 25fps and saved at 256×256
resolution. The audios are extracted from corresponding
videos and resampled at 16,000Hz. As for emotion texts,
we transform the emotion labels associated with the
videos into prompt-style forms like ∗ emotion, where ∗ ∈
{angry, contempt, disgusted, fear, happy, neutral, sad,
surprised}. Note that CREMA-D [4] does not contain
contempt or surprised. We adopt the standardized format
for emotion labels as emotion control text.

3) Implementation Details: The UNet is trained based on
a 2D conditional UNet architecture with the size of latent
space setting to 32. During training, the batch sizes and
learning rates for UNet, Emotion ControlNet, and EVE are
respectively set to 48, 12, 8, and 1e-5, 1e-5, 1e-3. The
optimizer is AdamW with a weight decay of 1e-3 and warm
steps of 500. The UNet is trained on an 80G Nvidia A100
GPU and the other modules are on a 24G Nvidia GeForce
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Fig. 3. Qualitative comparison with other methods. Visually our method produces better results than other methods MakeItTalk [73], StyleHEAT [68],
IP-LAP [72], EAMM[25], and EmoGen[13] on both MEAD [65] and CREMA-D [4].

RTX 3090 GPU. During inference, DDIM with 100 denoise
steps is used as the sampler.

B. Methods Comparison

In this section, we conduct comparative experiments quan-
titatively and qualitatively between our EAT-Face and several
baseline methods [13][25][68][72][73]. MakeItTalk [73] is a
classical method for talking face generation according to 3D
landmarks. StyleHEAT [68] leverages 3D facial coefficients
to realize one-shot synthesis. IP-LAP [72] is a more recent
method that utilizes 2D landmarks to animate a person
based on given audio. EAMM [25] and EmoGen [13] can
further generate talking portraits with desired emotion types.
We utilize their released checkpoints for evaluation in our
experiments.

1) Quantitative Comparison: To assess the image recon-
struction quality, we employ three metrics, Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity (SSIM), and
Cumulative Probability of Blur Detection (CPBD). Addi-
tionally, to measure perceptual similarity, we utilize two
metrics Learned Perceptual Image Patch Similarity (LPIPS)
and Fréchet Inception Distance (FID) that align better with
visual characteristics. Furthermore, lip-audio synchronization
is evaluated using Lip Sync Error-Distance (LSE-D) and Lip
Sync Error-Confidence (LSE-C) from SyncNet [6], while
identity similarity of the character is measured through the
Cosine Similarity score (CSIM) from ArcFace [8].

The quantitative results are presented in Table I. As can
be seen, the proposed EAT-Face shows excellent quality in

image reconstruction, particularly on the metrics of PSNR
and CPBD. In terms of perceptual similarity, our method
is superior to other methods. Particularly on the FID, our
method significantly surpasses MakeItTalk, StyleHEAT, IP-
LAP, EAMM, and EmoGen by an average of 59.54%,
88.21%, 45.71%, 91.14%, and 63.96% respectively, indi-
cating a stronger correlation with high-quality images. It
can be attributed to utilizing the diffusion model as the
foundation for generation which exhibits superior capability
compared to GAN resulting in higher quality. Regarding lip-
audio synchronization, on the MEAD dataset, our method is
marginally inferior to IP-LAP, and on par with MakeItTalk;
on the CREMA-D dataset, our method gets the best score,
demonstrating that EAT-Face possesses the ability to main-
tain synchronization. Moreover, our method achieves higher
CSIM, which means EAT-Face possesses a better ability to
preserve identity information. The reason is that our method
makes full use of identity encoding as one of the conditions
to guide generation.

2) Qualitative Comparison: Fig. 3 displays two exam-
ples of different methods. From the perspective of visual
perception, the results of EAT-Face are closer to the ground
truth. Firstly, similar to MakeItTalk and IP-LAP, our method
preserves more original identity information of the figure
to a greater extent than the rest 3 methods which have a
larger deviation from the ground truth. Besides, StyleHEAT’s
smoother face reduces its authenticity, and EAMM is easy
to lead to a phenomenon of asymmetrical eyes. Secondly,
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Fig. 4. Qualitative evaluation results of emotion control on MEAD.
Different columns denote different emotions. The 1st row is the ground truth
images, and the 2nd row is the face images generated by our EAT-Face.

TABLE II
QUANTITATIVE EVALUATION RESULTS OF EMOTION CONTROL

Emotion Type Emo-Acc. Emotion Type Emo-Acc.

Angry 82.51% Happy 81.41%
Contempt 80.02% Neutral 78.66%
Disgusted 75.19% Sad 81.99%
Fear 65.65% Surprised 51.13%

Average Emo-Acc. 74.57%

apparent and arrestive artifacts around the person’s contour
exist in StyleHEAT and EmoGen. Our method successfully
avoids generating these fuzzy or blunt details. In terms of
mouth movement, the separation between the upper and
lower lips of the talker may occasionally be not obvious
in IP-LAP, leading to an unnatural appearance. Our results
reduce this issue. Additionally, Fig. 3 shows the mouth shape
corresponding to some words, and more accurate visual
results appear in our EAT-Face. For example, the correspond-
ing mouth shape for the phonetic sign of /w/ follows the
usual situation, and when the sentence ends, the character’s
lip is closed. Finally, compared to other methods, our results
better preserve teeth shown during talking, resulting in more
authentic generated images.

C. Emotion Control Evaluation

To verify the effectiveness of EAT-Face on emotional
face generation, we conducted quantitative and qualitative
validation on the MEAD dataset.

1) Quantitative Results: To evaluate the control capability
on facial emotions of EAT-Face quantitatively, we addition-
ally train an emotion classifier based on VGG-16 [54] for
emotion classification of generated images. The accuracy
of predicted results by the classifier, marked as Emo-Acc.,
serves as the metric for evaluating our method’s ability
to control emotions, where a higher Emo-Acc. indicates
superior emotional control.

The results are presented in Table II. It can be seen that the
classifier accurately identifies the emotion of over 74.6% of
image frames on average in the generated videos, affirming
the effectiveness of our method for emotion control. Notably,
compared to emotions like fear and surprise, our method
demonstrates more proficiency in other emotions such as
happiness, sadness, anger, and contempt.

2) Qualitative Results: The visual results of EAT-Face
under different emotion-text settings are presented in Fig.
4. The generated faces exhibit expressions that are close to

Fig. 5. The t-SNE [63] visualization of emotion-control condition
embeddings. Different colors indicate different emotion types.

the semantic emotion of the specified text while preserving
identity information from reference images, indicating the
visual effectiveness of our method in emotion control.

Additionally, we utilize t-SNE [63] to visualize the emo-
tion conditions in Fig. 5. The clear distinction between
different emotion clusters demonstrates the effectiveness of
our emotion control.

D. User Study

We invite 38 participants to conduct the user study, and
they are divided into 2 groups for different investigations.

1) User study on EAT-Face: The first group is asked to
subjectively evaluate the generated videos by our EAT-Face
from 4 aspects: the tendency of emotions(Tend.), the degree
of emotional expression (Emo-De.), the reality of videos
(Real.), and the naturalness of characters(Nat.) respectively.
The metric of tendency is calculated by participants’ voting,
and the rest metrics are scored by participants from the range
1 to 10, with higher scores indicating better quality.

The results are depicted in Fig. 6. As can be seen, the
average percent of the emotional tendency of participants
reaches 73.2%, demonstrating a discernible emotional in-
clination among the characters featured in the generated
videos. The orientations for four emotion categories, namely
contempt, happy, neutral, and sad, are relatively high with
an average of approximately 80%, indicating that EAT-Face
exhibits strong reconstruction capability for these kinds of
emotions. The average degree of emotional expression in the
generated video stands at 7.192, which aligns well with our
expectations due to the medium-intensity emotion selected
in the training set. Subjectively speaking, both the reality of
videos and the naturalness of characters fall within normal
levels but are influenced by various factors such as frame
continuity and facial dynamic changes.

2) User Study among Methods: The second group is
asked to subjectively score the videos generated by dif-
ferent methods from 4 aspects: the expression of emo-
tion(Emo.), the visual quality(Vis-Q.), the lip-audio synchro-
nization(Sync.), and the identity preservation(ID-P.). The
score ranges from 1 to 10, in which higher means better.
The investigation results shown in Table III demonstrate
that our EAT-Face is better than other methods in all 4
aspects mentioned above, especially with the significant
improvement of emotional expression.



Fig. 6. Statistical results of the user study on EAT-Face. Different
colors denote different emotions, and the black dashes denote the average
statistical results of corresponding metrics.

TABLE III
USER STUDY AMONG DIFFERENT METHODS

Method Emo.↑ Vis-Q.↑ Sync.↑ ID-P↑

MakeItTalk[73] 5.730 6.395 7.020 8.395
StyleHEAT[68] 5.813 6.148 5.605 7.480
IP-LAP[72] 5.648 7.458 7.543 8.438
EAMM[25] 6.357 5.429 7.286 7.143
EmoGen[13] 6.286 5.500 7.714 7.500

EAT-Face(Ours) 8.190 7.543 7.918 8.730

TABLE IV
ABLATION STUDY ON EMOTION-RELATED MODULES

Method Components Metrics

DM EVE FEC Emo Emo-Acc.↑ Tend.↑

w/o EVE ✓ ✗ ✓ ✓ 62.88% 53.76%
w/o FEC ✓ ✗ ✗ ✓ 15.03% 19.24%
w/o Emo ✓ ✗ ✗ ✗ 13.51% 4.83%

Ours ✓ ✓ ✓ ✓ 74.57% 73.20%

E. Ablation Study

We conduct ablation studies on the MEAD dataset.
1) Impact of joint EVE: As shown in Fig. 7, we calculate

the cosine similarities between visual image embeddings and
emotion-text embeddings before and after joint EVE. It can
be seen that the joint EVE module significantly reduces the
distance between these two embeddings in the representation
space. This indicates that the proposed joint EVE does
contribute to aligning visual and emotional information.

2) Effectiveness of Emotion Control Modules: We attempt
to explore the effects of the joint EVE and the FEC module.
We try to remove or modify certain components as the
variation of our proposed method for the ablation study.
Three variants are employed: (i) the EVE is removed and the
encoded emotion-text is fed to ControlNet directly (mark as
w/o EVE); (ii) the FEC is removed and the encoded emotion-
text is concatenated with audio signal as the hidden state
condition (mark as w/o FEC); (iii) no emotional condition
is used (mark as w/o Emo). As can be seen from the results
in Table IV, the removal of any part will lead to a decline
in the generation effect, indicating the effectiveness of the
proposed modules.

(a) (b)

Fig. 7. The heatmaps of the embedding distance between visual images
and emotion-texts. (a) The softmax values of cosine similarities between
emotion-visual pairs before joint EVE processed. (b) The softmax values of
cosine similarities between emotion-visual pairs after joint EVE processed.

F. Limitations
Despite the effective performance of our EAT-Face, we

also find some limitations during explorations. Firstly, as
shown in Fig. 6, there is a lower orientation for fear emotion
that does not exceed 50%. The reason might be that there
are similarities in facial movements (e.g. staring, wide mouth
opening, etc.) between expressions of fear and surprise by
the reconstructed characters, leading to conflicts. Secondly,
issues of inter-frame jitter and mouth distortion persist in
some cases. Moreover, our approach ignores the emotional
information that speech audio itself may carry, which might
lead to visual-audio emotional conflict. These will be part of
our future work.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions
In summary, we propose an emotion-controllable audio-

driven talking face generation framework, called EAT-Face.
In detail, to leverage multi-modal conditions, we design an
LDM-based talking face reconstructor to synthesize audio-
synced face images. Besides, we also propose a ControlNet-
based facial emotion controller to manipulate emotional
content. Under the introduction of joint emotion-visual
embeddings, the semantic misalignment problem is effec-
tually improved. Comprehensive experimental evaluations
demonstrate the effectiveness of the proposed EAT-Face in
generating high-fidelity and emotional talking face videos,
which illustrates the proposed method is promising and has
potential in future AIGC fields at the same time.

B. Future Works
Although our proposed method can manipulate facial

emotions, in some circumstances the fusion of emotion
embedding might lead to unexpected results such as strange
mouth distortion, excessive and exaggerated expression, and
so on, which can be further explored in subsequent works.
Additionally, despite the usage of parallel sampling to speed
up inference, it might cause a frame mutation that is not
desired, which also can be a future direction for searching.
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