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Fig. 1: Face swapped results of proposed ClipSwap method. Here the identity in the target is replaced with that of the
source, while maintaining the style of the target face.

Abstract— This paper introduces ClipSwap, a new frame-
work designed for high-fidelity face swapping. Earlier methods
for face swapping often struggle in identity transfer due to
the mismatches in attributes between the target and source
images. To handle this issue, an attributes-aware face swapping
approach is proposed in our work. We use a conditional
Generative Adversarial Network and a CLIP-based encoder,
which extracts rich semantic knowledge to achieve attributes-
aware face swapping. Our framework uses CLIP embedding
in the face swapping process for improving the transmission
of source image’s identity details to the swapped image by
refining the high-level semantic attributes obtained from the
source image. And source image serves as the input reference
image for CLIP and ensures a more accurate and detailed
identity representation in the final result. Additionally, we apply
Contrastive Loss to guide the transformation of source facial
attributes onto the swapped image from various viewpoints.
We also introduce Attributes Preservation Loss, which penalizes
the network to keep the facial attributes of the target image.
Thorough quantitative and qualitative evaluations on multi-
ple datasets illustrate the high-quality swapping results. Our
proposed ClipSwap outperforms prior state-of-the-art (SOTA)
methods in face swapping, particularly in terms of identity
transfer and facial attribute features.

I. INTRODUCTION

The primary goal of face swapping is to create new images
which combine the unique characteristics of the source faces,
including skin color and facial features, with the attributes of

the target face, encompassing facial expressions, eye gaze,
head poses, backgrounds, and more. This research problem
has gained substantial interest in computer vision and image
processing community due to numerous applications, includ-
ing film industries, gaming visual, social media applications
and for aiding privacy protection [19]. Recently, there have
been notable advancements in face swapping techniques.
However it remains challenging to accurately extract and
merge identity information from source images and attributes
from target images for generating a realistic high quality
output [55].

There are two main types in face swapping techniques.
The first one is source-oriented methods, which operate at
the image level on the source face and the second one is
the target-oriented methods, which function at the feature
level on the target face. In source-oriented approaches [3],
[4], [35], the process begins by transferring facial attributes
such as pose and expression from the target to the source
face, followed by blending the source face into the target
face. Such methodologies are sometimes noisy, especially
with extreme head poses and illumination, and they often
struggle to generate the facial expression from the target.
On the other hand, target-oriented methods [2], [24], [28],
[20] work in the feature space and are more robust to facial
attributes. These approaches rely on Generative Adversarial
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Networks (GANs). This helps in maintaining the attributes
of the target image, including aspects like head pose and
illumination, without the need for supplementary processing
steps, such as learning perceptual and deep features during
the training phase [39], [29], [8]. In this paper, we present
a target-oriented approach called ClipSwap, which leverages
on the semantic information through a CLIP network [40]
for tackling challenges, including issues related to head pose,
illumination, and semantic structure.

In this study, we use a conditional GAN in conjunction
with the rich semantic knowledge embedded within the
CLIP encoder. Our work provides four main contributions:
a) we introduce a fresh perspective on the CLIP-based
reference-guided face swapping. Our approach involves the
transfer of source facial attributes to the target image whilst
integrating semantic information that was taken from the
reference image. The main objective here is to ensure the
seamless preservation of the subject’s identity throughout
the transformation process. As far as we are aware, this
is the first approach in face swapping that utilizes CLIP
architecture. b) Our network uses an attribute preservation
loss, which ensures the preservation of essential facial at-
tributes during the face swapping process. This loss function
guarantees that key characteristics such as facial expressions
and distinctive features are maintained, thereby enhancing
the overall quality of the results. c) We use a contrastive loss
for optimizing predefined directions within the CLIP-space
in order to control the editing process in desired directions,
from various perceptual perspectives. This approach allows
for more precise and controlled adjustments to the final
result, ensuring high-quality outcomes. d) We use three
datasets for our experiments: FaceForensic++ [44], CelebA-
HQ [16] and FFHQ [12]. The outcomes indicate that our
proposed ClipSwap outperforms prior SOTA methods in face
swapping. Furthermore, it excels in preserving pose quality,
surpassing most of the previous methods in this aspect.

II. RELATED WORKS

In recent times, notable advancements have emerged in
the area of face swapping. We discuss the major relevant
techniques below.

A. 3D Fitting Based Methods

Earlier face-swapping methods [49], [35] use 3D Mor-
phable Models (3DMM) [5] and facial segmentation net-
works. For instance, Face2Face [49] and Nirkin et al. [35]
involve the 3DMM fitting of both the source and target
images, which allow the transfer of expression and pose
parameters to generate swapped image. Nirkin et al. [35]
gather data for training a supervised occlusion-aware face
segmentation network. Methods such as the RSGAN [32],
FSNet [33], and FSGAN [34] perform blending of segmented
facial parts. Nevertheless, 3D-based models encounter chal-
lenges in achieving precise 3D reconstruction, often resulting

in distortions and artifacts in the final swapped facial image.

B. GAN-Based Methods

Recent methods take into account end-to-end training for
creating a face-swapped image based on learnt features.
SimSwap [8], introduces the concept of weak feature match-
ing, placing a stronger emphasis on preserving the source’s
facial expressions. Another method, MegaFS [59] is based
on a pre-trained StyleGAN architecture. FaceShifter [29],
on the other hand, adopts a strategy involving multi-level
mixing, utilizing an encoder-decoder architecture to mitigate
information loss, a challenge faced by the IP-GAN approach.
In contrast, HifiFace [52] proposes a method that integrates
a 3D shape model, prioritizing active shape modifications.
Despite their ability to create realistic face swaps, most
GAN-based methods often have trouble retaining the identity
details of the source face and the structural information of
the target face.

C. Contrastive Language–Image Pretraining (CLIP)

The CLIP-based embedding has become an efficient tool
in different image manipulation and generation tasks such as
image synthesis and content transfer. StyleMC [23] proposes
an efficient and fast technique for text-driven image genera-
tion and manipulation. It combines the capabilities of CLIP
and StyleGAN2, utilizing CLIP-based and identity losses to
modify images based on a single text input while keeping
other attributes. In contrast, [7] proposes a method for
essence transfer that seamlessly transfers semantic features
from a target image to a source image using StyleGAN for
image generation and employs CLIP for image recognition.
CF-CLIP [57] presents a method for precise text-guided
image editing using CLIP. A new loss function, CLIP-
based Noise Contrastive Estimation (CLIP-NCE) loss is also
introduced in their work, to utilize the semantic knowledge of
CLIP. HairCLIP [53] presents a new model for hair editing,
enabling the manipulation of hair attributes individually or
in combination, guided by text descriptions or reference
images. CRFAST [27] presents a method that enables the
transfer of meaningful information from a reference image
to a source image. In their work, they introduce a new
contrastive loss designed to thoroughly employ CLIP’s rich
semantic knowledge for facial features.

While CLIP-based methods have not been directly applied
to face swapping in prior research, their demonstrated suc-
cess in various related domains suggests untapped potential
that serves as the foundation for the novel approach presented
in our work. Contrary to earlier approaches, our proposed
ClipSwap model integrates a GAN-based approach with the
CLIP model which enables the accurate and seamless transfer
of source identity information to the swapped faces while
maintaining the attributes and expressions from the target
faces. During training, attributes preservation loss function
constraints the network to preserve target image’s attributes.
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Fig. 2: Architecture of ClipSwap is built upon U-Net encoder-decoder in conjunction with CLIP image encoder and mapping
network. We use pretrained ArcFace [10] identity encoder, to extract identity information. zid represents the concatenated
identity vectors from ArcFace [10] and CLIP image encoder [41], while wid denotes the mapped identity vector. We apply
perspective augmentation to the swapped image and encode it in the CLIP space to compute the CLIP-based contrastive
loss. Detailed structures of the essential building blocks within our proposed ClipSwap model are shown on the right side.
fin is the input feature map. Each block, including ResBlock, AdaIN [14], AFFA [42], and Mapping, plays an significant
role in the overall architecture.

III. METHOD

This section depicts the architecture of ClipSwap, illus-
trated in Fig. 2, alongside the CLIP image encoder, and the
loss functions employed for model training.

A. Network Architecture

Our objective is to create a high fidelity swapped face
Xswap which retains the identity of the source face, Xsrc,
while also capturing the attributes of the target face, Xtgt

(e.g, illumination, head pose, facial expression, and back-
ground components). To achieve this goal, our network is
based on a conditional GAN with a generator, discriminator,
and a mapping network, along with ArcFace and a CLIP
image encoder, as depicted in the proposed architecture.

Identity Encoder: We use a ResNet50 backbone-
equipped, pre-trained identity encoder ArcFace [10] for
extracting the identity information from a source image Xsrc.
An identity vector with a size of 512 is produced by ArcFace
and used as an input to the model.

Attributes Encoder: Maintaining the specifics of facial
attributes including head pose, facial expression, background,
and illumination, demands a richer spatial representation

compared to identity preservation. We input the Xtgt into a
network similar to U-Net in order to maintain this informa-
tion and define the attribute embedding through multi-level
feature maps.

Generator: Inspired by the mechanism of FaceDancer
[42], our generator follows an encoder-decoder architecture
resembling U-Net. The encoder uses a series of blocks that
gradually capture more complex details by increasing the
number of filters. Additionally, the decoder uses blocks,
each employing techniques such as concatenation layer, or
Adaptive Instance Normalization (AdaIN) [14], [8], or an
Adaptive Feature Fusion Attention (AFFA) [42] module, to
utilize skip connections, as illustrated on the right side in
Fig. 2. Specific details of each block are also illustrated.

Mapping Network: As demonstrated in prior works such
as [18], [17], we use a mapping network, referred to as M, to
augment the capabilities of G to convert the original identity
distribution to a new distribution. In the mapping network,
there are four fully-connected layers (FC), and all layers with
the exception of the last one, employ leaky ReLU which
serves as the activation function (Fig. 2).

CLIP Image Encoder: We use the CLIP model for
transferring source facial attributes to the target image and



integrating high-level semantic attributes from the source
image. By utilizing the capabilities of this large-scale pre-
trained CLIP model, we enable guided manipulation based
on reference image. This methodology encourages diversity
in image generation and safeguards against the emergence of
unrealistic results by adjusting the direction of CLIP-space
between the pair of reference image and result image.

B. CLIP Contrastive Learning

CF-CLIP [57] and CRFAST [27] adopt CLIP-NCE and
contrastive learning for text or image-guided manipulation
tasks. Inspired from their works, we also use the CLIP-
based contrastive learning in our face swapping process.
This aims to enhance the transfer of source’s identity and
other related facial attributes to the swapped image while
accommodating various perspectives by optimizing the CLIP
contrastive loss. Following CLIPStyler [25], swapped image
is randomly augmented before computing the CLIP con-
trastive loss. Augmenting the swapped image before feeding
it into the CLIP image encoder introduces diversity in the
image. This diversity helps in capturing different variations,
such as facial expressions, poses, lighting conditions, and
other attributes present in the swapped image. As a result, the
model learns to understand and encode different variations
and features more effectively in examining the semantic
information in the CLIP framework. So, this strategy greatly
assists our network in moving closer to its ultimate goal. The
augmentation process can be formulated as follows:

Xaug = augmentation(Xswap) (1)

The contrastive learning approach we introduce seeks to
improve the shared information between similar and dis-
similar pairs by computing the contrastive loss, enabling
a comprehensive investigation of the semantic information
contained within the CLIP space. Similar to established
contrastive loss approaches [38], [54], [46], it is necessary to
generate query, similar, and dissimilar samples. As depicted
in Fig. 3, the contrastive loss brings similar samples S+

closer to the query Q, while moving dissimilar samples S−

more distant from it. And the query Q is defined as follows:

Q = CLIP (Xaug)− CLIP (Xswap), (2)

Q denotes the “semantic direction” originating from Xswap

to Xaug . Then, we establish similar samples based on the
following two criteria:

S+
1 = CLIP (Xref )− CLIP (Xswap)

S+
2 = CLIP (Xref )− CLIP (Xmean)

(3)

where S+
1 serves to facilitate the alignment of facial identity

features, directing them from the Xref towards the Xswap.
On the other hand, S+

2 represents the direction of features
extending from the Xref to the Xmean. This mean image
captures the combined, averaged semantic attributes of all
faces that have been generated. S+

2 plays a role in ensuring
that the desired direction aligns with identity features of the
reference image Xref .

To provide comprehensive guidance and optimize CLIP
space utilization, we define dissimilar samples as S−. These
samples represent directions within the CLIP embedding
space that go from the swapped image to the mean image.
This prevents the model from generating images with identity
features differing from those observed in the reference image,
such as the mean image. As a result, our design of dissimilar
samples S− ensures that the model avoids CLIP embeddings
associated with face images displaying identity features
distinct from those in the reference image.

S− = CLIP (Xswap)− CLIP (Xmean) (4)

The CLIP contrastive loss aims to enhance CLIP’s editing
capability by increasing the mutual information between
selected similar pairs while decreasing it between dissimilar
pairs in the CLIP’s feature space. This approach provides
comprehensive guidance, enabling desired adjustments from
different perspectives. Specifically, the CLIP contrastive loss
we present can be expressed as follows:

Lcontra = −log
e(Q.S+

1 /τ)

e(Q.S+
1 /τ) +

∑
S− e(Q.S−/τ)

−log
e(Q.S+

2 /τ)

e(Q.S+
2 /τ) +

∑
S− e(Q.S−/τ)

,

(5)

where the temperature τ is set to 0.1 in this work.

C. Loss Functions

Alongside the CLIP contrastive loss, we incorporate other
critical loss components: identity loss, reconstruction loss,
attributes preservation loss and perceptual loss. To gain
a thorough understanding of the influence of these loss
functions on inputs and outputs, please refer to Fig. 2.

Identity Loss: The identity loss takes a pivotal role in
instructing the network to retain the source face’s unique
identity attributes in the swapped image, ensuring a faithful
transfer of identity. To ensure the preservation of the identity
details of the source image during the process of swapping,
we utilize the identity loss, which is calculated as follows:

Lid = 1− cos ((R(Xsrc), R(Xswap))) (6)

where R(·) represents the ArcFace [10] network and cos(.)
stands for the cosine similarity.

Reconstruction Loss: The inclusion of the reconstruction
loss serves as a precise objective: when the target image
Xtgt and the source image Xsrc have the same identity, the
reconstruction loss is computed to ensure that Xswap, the
generated swapped image, is equivalent to the target image.
The following is the definition of the reconstruction loss:

Lrec =

{
∥Xtgt −Xswap∥ if Xtgt = Xsrc

0 otherwise
(7)

Perceptual Loss: To further improve both the reconstruc-
tion performance and the image’s semantic understanding,
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Fig. 3: Visualizing CLIP Contrastive Learning: Within the
CLIP embedding space, the query’s direction, leading from
the swapped image Xswap to the augmented image Xaug

(indicated by the green arrow), is a critical focus. Here,
we make two types of similar samples, (represented by the
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1 guides the query to adjust its alignment
towards the direction from Xswap to Xref , while S+

2 serves
as a control mechanism to prevent excessive deviation. The
red arrow highlights dissimilar samples originating from the
swapped image to the reference image. Through the process
of attracting similar pairs and pushing apart dissimilar pairs,
the CLIP contrastive loss facilitates an extensive exploration
of CLIP representations.

we incorporate the perceptual loss. This is motivated by the
robustness of deep features in various reconstruction tasks,
as evidenced by the previous work [51], [15]. The perceptual
loss can be described as follows:

Lp =

{∑n
i=0 ∥P (i)(Xtgt)− P (i)(Xswap)∥ if Xtgt = Xsrc

0 otherwise
(8)

Attributes Preservation Loss: We introduce the at-
tributes preservation loss, calculated as the L2 distance
between the target image and the swapped image, to enhance
the preservation of key attributes such as hair, hat, eyeglasses,
ear, earring, etc. This approach is designed to utilize the
strengths of two distinct pretrained models: a FaceNet [11]
model for precise facial coordinate detection and an MXNet
[31] facial attribute extraction model for comprehensive
attribute analysis. By minimizing the L2 distance between the
target and swapped images, we try to ensure the preservation
of essential attributes. The rationale behind the attributes
preservation loss function is to make the network learn how

to maintain the target face’s attributes in the output. This loss
can be defined as

Latt =
N∑
i=1

∥A(Xtgt)−A(Xswap)∥22 (9)

Here, A(Xtgt) and A(Xswap) represent the attribute vectors
extracted from the target and swapped images, respectively,
for N attributes.

During the training of our ClipSwap model, a weighted
sum of the losses mentioned earlier is employed, with the
weights assigned as follows:

L = λ1Lid + λ2Lrec + λ3Lp + λ4Lcontra + λ5Latt, (10)

where λ1, λ2, λ3, λ4 and λ5 are weights for the loss terms.

IV. EXPERIMENTS

A. Datasets

We train our ClipSwap network on the VGGFace2 dataset
[6], which includes 3.31 million pictures of 9131 partici-
pants. Then we evaluate the network on the following three
datasets:
FaceForensics++ [44] contains 1000 original conversational
videos retrieved from YouTube and manipulated with five
distinct methods. Following previous works [29], [52], [8],
we take 10 frames from every video to produce a test dataset
that contains 10K facial images in total.
CelebA-HQ [16] consists of 30K celebrity faces, each with a
resolution of 1024×1024. We select 10K images for testing.
FFHQ [12] contains 70K face images obtained from Flickr
and contains different kinds of gender, age, ethnicity, and
background. We use 10K images for testing.

B. Implementation Details

In our experiments, we resize the images to 256 × 256,
covering both the entire face and some background regions.
We align all faces using five-point landmarks extracted
with RetinaFace [9] to match ArcFace’s input requirements.
ArcFace [10] is pretrained on MS-Celeb-1M [13] using a
ResNet50 backbone. The loss weights are configured as
λ1 = 10, λ2 = 5, λ3 = 0.2, λ4 = 0.3 and λ5 = 10. We
train our model employing the Adam optimizer [22] with
the parameters of β1 = 0, β2 = 0.999 and learning rate of
10−4. The training process continues for 300,000 steps with
a batch size of 10.

Evaluation Metrics: We employ various evaluation met-
rics, including identity retrieval (ID), pose error, expres-
sion error, structural similarity index method (SSIM), peak
signal-to-noise ratio (PSNR), multiply accumulate operations
(MACs) and number of parameters (Param.). We use the
CosFace [50] encoder to evaluate the identity. In order to
optimize the computing cost for some tests, we follow [59],
[56] and measure the ID similarity. This similarity metric



Source Target FaceDancer HifiFaceSimSwap Ours

Fig. 4: Qualitative comparisons of ClipSwap (Ours) with
FaceDancer [42], SimSwap [8] and HifiFace [52] on CelebA-
HQ [16]. Our method achieves high-fidelity results while
better preserving the source identity (e.g., eyebrow, eye, lip
shape and color).

is determined by computing the cosine similarity between
swapped and their respective source faces [50]. Expression
is measured by the average L2 distance between the facial
landmarks of target face and the output, as described in [19],
[34]. We use dlib library [21] for the detection of facial
landmarks. The pose estimator in [45] is used to compare
poses, and the average L2 error is reported.

C. Results

Qualitative Results: We conduct qualitative compar-
isons on both the CelebA-HQ and FFHQ datasets, wherein
we evaluate our method against SOTA techniques such as
FaceDancer, SimSwap, and HifiFace. We present the results
in Fig. 4 and Fig. 5. It is evident that our approach yields
swapped results that are of better quality. This can be
attributed to the use of attribute preservation loss and use
of CLIP embedding. The swapped faces in SimSwap and
HifiFace exhibit artifacts and distortions (See rows 1-4 in
Fig. 4 and row 1, 2 and 5 in Fig. 5). Lip color differences
in HifiFace are noticeable (See the first row in Fig. 4).
ClipSwap maintains pixelation artifacts, whereas SimSwap
and HifiFace often lead to the creation of a smooth face or, in
some cases, outright failure. While FaceDancer can generate
visually aesthetic results, it frequently retains the identity
details from the target, resulting in swapped outcomes that
closely resemble the target, as seen in all sample images in
Fig. 4 (Notice the eyebrows, eyes, lip shape and color). Ad-
ditionally, the faces generated by FaceDancer often exhibit
a blurred appearance (row 1, 2, 4 in Fig. 5). In contrast,
due to CLIP-based reference-guided face swapping, high-

Source Target FaceDancer HifiFaceSimSwap Ours

Fig. 5: Qualitative comparisons of ClipSwap (Ours) with
FaceDancer [42], SimSwap [8] and HifiFace [52] on FFHQ
[12]. Our method achieves high-fidelity results while better
preserving the source identity.

level semantic facial attributes are learnt from the source
image and generate in the swapped image with the help of
reference image. By successfully incorporating the attributes
of the target image while preserving the identities of the
source image, our method outperforms in this regard. It is
evident that our method retains the source image’s identity
features in the output.

Quantitative Results: We perform the experiment us-
ing the FaceForensics++ dataset [44], and the results are
compared to other SOTA methods, such as SimSwap [8],
FaceDancer [42], and HifiFace [52]. We create a test dataset
of 10K frames by selecting 10 frames randomly from ev-
ery video in the FaceForensic++ dataset, similar to earlier
works [8], [42], [29] and [52]. The results are depicted in
Table I. Our method, ClipSwap, evidently outperforms SOTA
methods based on ID retrieval, pose, and SSIM metrics.
Regarding expression and PSNR, we achieve comparable
results to SimSwap and FaceDancer methods. Although our
model uses more parameters than SimSwap and HifiFace,
we perform the swapping process with lower computational
costs, as measured by MACs and number of parameters.

To compare swapped results in high-resolution images, we
randomly sample 10K pairs of images from both the CelebA-
HQ and the FFHQ datasets to create the test datasets. We
evaluate various metrics such as ID similarity, expression er-
rors, pose errors, SSIM and PSNR. As presented in Tables II
and III, our method consistently outperforms other methods
across all evaluation metrics, with the exception of pose error
on the CelebA-HQ test dataset, where ClipSwap achieves the
second lowest pose error (2.83), following FaceDancer. This



Method ID↑
Ret.

Pose↓ Exp↓ SSIM↑ PSNR↑ MAC↓
(G)

Param.↓
(M)

FaceDancer 98.84 2.04 7.97 0.97 33.34 NA NA

SimSwap 92.83 1.94 2.39 0.81 24.38 55.69 107.24
HifiFace 98.48 2.63 NA 0.89 24.55 102.39 146.8

Ours 98.91 1.73 5.76 0.98 33.04 53.56 174.23

TABLE I: Results of a quantitative comparison on Face-
Forensics++ [44]. The best result is shown in bold. Upward
arrow signifies that higher values correspond to improved
performance, while lower values indicate the opposite.

Method ID Sim. ↑ Pose ↓ Exp ↓ SSIM ↑ PSNR ↑

FaceDancer 0.52 2.72 26.07 0.92 27.89

SimSwap 0.31 3.34 30.28 0.71 23.38

HifiFace 0.29 3.69 40.63 0.85 23.65

Ours 0.55 2.83 25.52 0.94 28.90

TABLE II: Results of a quantitative comparison on CelebA-
HQ [16]. The best result is shown in bold. Upward arrow
signifies that higher values correspond to improved perfor-
mance, while lower values indicate the opposite.

Method ID Sim. ↑ Pose ↓ Exp ↓ SSIM ↑ PSNR ↑

FaceDancer 0.51 2.95 31.57 0.90 26.17

SimSwap 0.38 4.29 33.03 0.69 23.04

HifiFace 0.36 4.87 50.89 0.77 22.27

Ours 0.53 2.84 30.77 0.91 26.50

TABLE III: Results of a quantitative comparison on FFHQ
[12]. The best result is shown in bold. The upward arrow
signifies that higher values correspond to improved perfor-
mance, while lower values indicate the opposite.

observation is supported by visual comparisons shown in Fig.
4 and Fig. 5.

D. Ablation Study

We perform both qualitative and quantitative ablation
studies on CelebA-HQ dataset.

W/o CLIP Image Encoder: Our proposed model Clip-
Swap is compared with a baseline model that excludes the
CLIP image encoder, resulting in the omission of providing
the reference image to CLIP. As illustrated in Fig. 6, the
images in the third column generated by this baseline model
fail to maintain the source face’s facial identity information.
Notably, it struggles in transferring features such as eye-
brows, eyes, lip shape and lip color of the source image,
while retaining some identity elements of the target image.
Consequently, the resulting image bears a closer resemblance
to the target image. In contrast, our ClipSwap approach ex-
cels in addressing these challenges, achieving superior results
through the integration of CLIP-based reference image.

W/o Attributes Preservation Loss: We also conduct
a comparison between ClipSwap and a model that omits
the inclusion of our proposed attributes preservation loss.
Not including the attributes preservation loss leads to the
exclusion of specific attribute details, which is noticeable in
the images presented in the fourth column of Fig. 6. It is
evident from the visual results that this model, lacking the
attributes preservation loss, struggles to accurately transfer
attributes such as eye gaze and eye color to the swapped
image.

W/o Augmentation: We perform an experiment on the
augmentation process. When we calculate the contrastive
loss without using augmentation, the model lacks diverse
representations of the swapped image. Consequently, it fails
to generate accurate facial expression and eye gaze, as
demonstrated in the fifth column of Fig. 6. This limitation
arises because the model lacks sufficient positive and nega-
tive samples to understand the semantic information within
the CLIP framework. Therefore, the augmentation process
plays an important role in our model.

W/ ArcFace Image Encoder: To access the impact of
the CLIP-based reference guided approach on our model, we
conduct experiments by replacing the CLIP image encoder
with ArcFace encoder. To guarantee a fair comparison, we
compute the contrastive loss between the identity features of
the source image, obtained by the ArcFace encoder, and both
similar and dissimilar samples of the swapped image. As
shown in the sixth column of Fig. 6, ArcFace provides better
face shape (second row), but it fails to preserve accurate
gaze direction (first and second row). Moreover, it retains
some identity features of the target image, such as lip shape
and color (first row). Thus, we can conclude that CLIP
incorporates a broader understanding of visual content and
may capture more context-aware features. Additionally, the
ability to utilize the source image as a guiding reference
image in CLIP provides a way to steer the generation
process, ensuring that the swapped face aligns closely with
the reference image.

The results shown in Table 4 confirm the aforementioned
observations, validating that our proposed model consistently
outperforms alternative baselines developed through various
ablations. These results highlight the superior performance
of our model across multiple quantitative metrics.

Method ID Sim. ↑ Pose ↓ Exp ↓ SSIM ↑ PSNR ↑

w/o CLIP 0.52 3.13 25.67 0.93 27.78

w/o att. loss 0.54 2.99 26.31 0.94 27.90

w/o Aug. 0.47 3.99 31.41 0.90 24.03

w/ ArcFace 0.52 2.92 25.71 0.94 28.86

Ours 0.55 2.83 25.52 0.94 28.90

TABLE IV: Ablation Study: Quantitative comparison of
the proposed ClipSwap with different configurations on the
CelebA-HQ [16] dataset images.



Source Target w/o CLIP w/o Att. loss Oursw/o Aug w/ ArcFace

Fig. 6: Ablation Study: Qualitative comparison of ClipSwap with different configurations (such as w/o CLIP, w/o attributes
preservation loss, w/o augmentaion process in computing CLIP contrastive loss and the model w/ ArcFace is for ablating
CLIP image encoder) on the CelebA-HQ [16]. Please see Section D. for more details.

Failure Cases: Although ClipSwap is successful in many
instances, we have observed certain failure cases where it
does not perform as expected. These challenges typically
occur when the face is not directly facing the camera or when
the lighting conditions are extremely poor. In such cases, cer-
tain facial features become less visible or obscured, causing
our model to struggle in accurately detecting and transferring
the source identity onto the target face. Consequently, the
resulting image tends to retain more characteristics of the
target face, often introducing artifacts and failing to achieve
the intended result. In Fig. 7, we illustrate some instances
where our model faces these particular challenges and may
not perform as well.

Fairness and Ethics: As face related machine learning
applications are extremely important, they require training
data that is representative of different cultures, ethnicities,
and genders. Therefore, the results of face swapping tech-
nologies may not always be accurate. In terms of ethics, the
use of such technologies should be regulated, and the users
should be made aware of any negative use cases and their
repercussions. The purpose of creating such face swapped
images in this work is for several ethical applications such
as the film industry [1] and computer games, primarily for

Source Target Result

Fig. 7: Few noisy generated results from ClipSwap. Notice
the head pose and poor illumination in the target images.

generating fictional twins and enhancing gaming visuals. In
addition, it can also be applied in several other domains
including privacy preservation [19], [44], [43], aiding digital
forensics investigation [37] and contributing to academic
studies. Moreover, in areas like facial emotion recognition
[26] where there is not enough data, face swapping could
help as a potential method for facial data augmentation
[30], [47]. It is noteworthy that improving face swapping
technologies will also improve the ability to detect forged
facial images [36], [48], [58]. Therefore, face swapping has
received much attention in the research area of computer
vision and graphics [8], [28], [52]. Additionally, we want
to highlight that our research aims to contribute to ethical
applications within these domains.

V. CONCLUSION

In this paper, we introduce ClipSwap, a framework for
high-fidelity face swapping designed to maintain sensitive
facial attributes. We present the concept of CLIP-based
reference-guided face swapping, which enables the transfer
of source facial attributes to the swapped image while
preserving the identity of the original subject. Additionally,
we use the CLIP contrastive loss to optimize CLIP-space
directions, thus guiding the editing process towards desired
attributes. This optimization is achieved by increasing the
mutual information between the swapped and reference
images. Furthermore, we ensure the faithful preservation of
essential attributes between the target and swapped images
through the incorporation of an attributes preservation loss.
Our proposed framework consistently demonstrates superior
performance in generating realistic face images, ensuring
that not only facial coordinates but also critical attributes
are faithfully matched. Our extensive experiments provide
the validation of the effectiveness of our approach, demon-
strating a clear and significant superiority over previous
face swapping methods. As part of the future work, we
will include hair style transfer into the network, while also
enhancing its robustness to occlusion. There is also scope
for video based face swapping via temporal changes.
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