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Abstract— Cleft lip and palate (CLP) is a congenital condition
causing deformities in the oral and labial tissues. Post-surgery,
patients often experience residual issues like facial asymmetry,
and speech disorders. Tracking points in the orofacial area
using a facial landmark detector (FLD) contributes to the
assessment of speech development and movement impairments.
However, off-the-shelf FLDs fail at delineating the lips of
patients with repaired CLP. To address this need, our study
introduces the CLP-Trans strategy, a domain transfer solution
that employs tailor-made affine transformations to modify
facial images sourced from publicly available datasets, which
constitute our source domain, whereas images of patients with
repaired CLP form our target domain. We aim to reduce dis-
tribution disparities between the source and target domains for
FLD by simulating common outcomes of CLP repair surgery.
The system utilizes a deep convolutional neural network (CNN)
to learn from transformed images, therefore, preserving the
privacy and facilitating the reproducibility of the findings. The
strategy achieves statistically significant improvements in the
normalized mean square error (NMSE), reducing it from 2.417
to 2.086 (i.e., 13.7% error reduction) by using the proposed
strategy when evaluating images of patients with CLP.

I. INTRODUCTION

Cleft lip and palate (CLP) are congenital conditions that
emerge during fetal development and manifest as deformities
of the oral and labial tissues in the orofacial area. The
orofacial function encompasses complex, coordinated vital
activities such as breathing, chewing, swallowing, and speak-
ing. Additionally, the orofacial region plays a fundamental
role in social interaction, involving emotional communi-
cation, facial expression, and appearance [22]. Therefore,
deformities caused by CLP substantially compromise the aes-
thetic, morphological, and functional aspects of the orofacial
function [8]. These congenital disorders affect a significant
number of individuals globally at a rate of 0.45 in 1,000 [30],
and at a rate of 1 in 1,000 in the USA [21]. The standard
surgical approach for CLP involves the restoration of the
lip, palate, and nose’s anatomical structure, including the
muscular components. The primary objective of optimal CLP
surgical treatment is to reinstate the functional aspects of
the lip and nose while simultaneously achieving maximal
symmetry and aesthetic outcome for both structures [12].
However, depending on the severity level of the cleft, a
variable degree of residual lip scarring, facial asymmetry, and
speech disorders are expected after the first repair surgery
[25], [8]. Then, multiple surgeries are often required.

Even though patients with CLP undergo speech evalu-
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Fig. 1: Comparison of the facial landmarks extraction using our CLP-Trans
strategy and FAN [4].

ations on an annual basis, those with severe speech dis-
orders are reevaluated as frequently as deemed necessary
by qualified speech-language pathologists. Speech evaluation
commonly relies on instrumental procedures such as vide-
ofluoroscopy, nasopharyngoscopy, nasometry, measurement
of the pressure flow, and speech recordings [1]. Conse-
quently, the diagnosis and evaluation of speech therapy can
be a challenging task for physicians, and it can also be
unpleasant for patients, especially when they are children.
An automated and less invasive evaluation can contribute to
a better quality of life for patients. In this context, automatic
detection of facial landmarks in patients with cleft lip can be
useful for analyzing movement impairments that negatively
influence speech. However, current off-the-shelf automatic
facial landmark detectors, such as dlib [16], MediaPipe
[15], FAN [4], and OpenFace [2], are based on machine
or deep learning models that are trained on non-cleft lip
facial images. As these methods are not trained on CLP data,
they fail when used on repaired CLP. These models tend
to inaccurately delineate the lips of patients with repaired
CLP by smoothening the points that diverge from a standard
mouth shape, missing the key information needed to assess
the effectiveness of the surgical procedure (Fig. 1).

The automatic detection of facial landmarks in patients
with CLP has primarily focused on providing early pathology
diagnosis [37], [26] and presurgical guidance, including
assessing the severity level of the cleft [19], [33]. Few studies
have considered the automatic detection of facial landmarks
in patients with CLP as a tool for treatment planning and di-
agnosis [18], [12]. However, these studies commonly rely on
2D or 3D images of patients with CLP that are subsequently
manually annotated or corrected by specialists. Additionally,
the collected images are not disclosed to preserve patient
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privacy, which limits the reproducibility of the findings.
Motivated by the need to improve automatic facial land-

mark detection (FLD) for patients with repaired CLP, we
propose the CLP-Trans strategy. This approach leverages a
domain transfer solution that employs affine transformations
to modify the facial appearance by manipulating specific
geometric properties in the orofacial area while leaving
the remaining facial structures unmodified. Facial images
sourced from publicly available datasets constitute our source
domain, whereas images of patients who underwent repaired
CLP form our target domain. The objective is to modify these
images to reduce distribution disparities between the source
and target domains for FLD, simulating common outcomes
of CLP repair surgery.

Subsequently, a deep convolutional neural network is
trained using the modified images, preserving the privacy
of patients with cleft lip. The approach is scalable since it
relies on modifications of images of non-cleft lip subjects,
allowing us to use existing datasets for FLD. The approach
is appealing because it does not need data from patients
of the target domain, for whom obtaining consent can be
more challenging, relying on their parents or legal guardians,
especially when treating young patients.

We evaluate our model using three different test sets.
First, we use the original test set of the source domain,
as defined in the publicly available databases used to train
our model. Second, we apply our CLP-Trans strategy on
the provided test set to get a synthetic CLP test set that
resembles the target domain. Lastly, we evaluate our model
on repaired CLP images to ensure that our proposed method
improves landmark detection on real data, not just the mod-
ified faces. A flowchart of the CLP-Trans strategy is shown
in Fig. 2. We evaluate the results using the normalized mean
square error (NMSE) between each fitted shape and the
ground truth annotations. Using the CLP-Trans strategy, we
achieved an NMSE of 2.086 on patients’ images, compared
with an NMSE of 2.417 obtained from the system without
transformations, leading to a 13.7% error reduction. The
contributions of this paper are as follows:

• A domain transfer solution that uses tailor-made trans-
formations to recreate the orofacial asymmetry resulting
from CLP repair surgery.

• Adapting a deep learning model to improve the detec-
tion of facial landmarks in patients with repaired CLP.

• Ensuring privacy protection for the images of patients
with CLP, as the deep learning model is trained using
images containing synthetic CLP conditions.

• Demonstration that the inclusion of transformed images
resembling the repaired CLP condition enhances FLD
even on unmodified images.

II. RELATED WORKS

In cleft lip and palate analysis, both 2D and 3D pho-
tographs have been used to develop FLD methods for various
purposes. These objectives include early diagnosis of the
pathology in fetuses, pre- and postoperative evaluation, cleft
lip severity diagnosis, and surgical support. In this section,

we present a review of noteworthy studies conducted in this
area, mainly focusing on the advancements made in FLD for
cleft lip and palate analysis in 2D.

Lee et al. study [18] closely aligns with our research,
focusing on FLD in patients with repaired CLP. The study
aimed to track crucial lip landmarks for diagnosing com-
munication impairments and to plan appropriate treatments.
They employed the active appearance model (AAM) [34]
to identify 64 facial landmarks. During the training stage, a
statistical facial model is obtained from images containing
manually annotated landmarks. In the inference phase, first
a face detector isolates regions containing faces. Then, the
AAM extracts the facial landmarks. However, the study does
not report specific performance metrics.

In the context of guiding incisions in the orofacial area for
cleft lip and palate repair surgery, Li et al. [19] and Sayadi et
al. [33] proposed the use of deep CNNs to predict landmarks
on unrepaired cleft lip 2D images. Li et al. [19] fine-tuned
a model pretrained on the FLD dataset Menpo [39], using
2,568 images of patients with unrepaired cleft lip. The
goal was to predict the position of 12 landmarks, resulting
in improved localization of surgical markers compared to
state-of-the-art (SOTA) facial feature extraction methods.
Similarly, Sayadi et al. [33] extended this approach to place
21 cleft anthropometric points in 2D real images and videos
using the high-resolution network (HRNet) [38] and the
mirroring data augmentation strategy.

The identification of facial landmarks in individuals with
unrepaired cleft lip can aid in assigning severity grades to
the cleft before surgery. McCullough et al. [23] experimented
with five different CNN-based models trained on 800 cleft
lip images with manually annotated landmarks specific to
cleft lip repair surgery. Among these models, the MobileNet
model [13] demonstrates the best performance in FLD.

Chen et al. [5], [6] proposed an alternative approach,
employing image inpainting to generate non-cleft lip im-
ages and their corresponding landmarks based on cleft-lip
images. The method involves training a convolutional-based
generation network on facial images of individuals without
cleft lip, masked for privacy preservation. During inference,
the orofacial area of images of patients with unrepaired cleft
lip is manually masked and processed, generating images
representing plausible outcomes of cleft lip repair surgery
along with their facial landmarks. Although this approach
does not specifically improve the detection of cleft lip land-
marks, it produces images that simulate common outcomes
of the repair surgery.

In line with the motivation of Lee et al. [18], Hallac et
al. [12] tracked the movement of 13 landmarks in video
stereophotogrammetry recordings of 23 patients with re-
paired cleft lip, aiming to detect dynamic facial asymmetries.
Although the work does not concentrate on improving FLD,
it is relevant to note that the landmarks were automatically
tracked using the DI4D view software, but required manual
verification frame by frame to ensure accurate placement.
We gain insights into the advancements made in cleft lip
analysis and facial landmark extraction by reviewing these



Fig. 2: Flowchart of the CLP-Trans strategy. The images have been blurred
for privacy preservation. However, the images are not blurred to train the
model.

related studies. It becomes evident that there is a need for a
system capable of accurately identifying facial landmarks in
patients with repaired cleft lip, which aligns with the focus
of our work.

No established domain transfer methodologies exist for
patients with CLP. Jin et al. [14] identified domain discrep-
ancies affecting landmark detection in orthodontic diagnosis
proposing a self-training strategy using unlabeled target do-
main data. However, privacy concerns arise as this approach
requires patient data for model training.

III. METHODOLOGY

This section describes the image domain transfer foun-
dation along with the image transformation details and the
MobileNetV2 model adaptation, illustrated in Fig. 2.

A. Image Domain Transfer

In the field of transfer learning, the scenario where labeled
data is available solely from a source domain while lacking
it from the target domain is termed transductive transfer
learning. Additionally, encountering a situation where source
and target data vary in domain but are intended for the same
task presents a domain transfer problem [27]. In this study,
there is plenty of labeled data within the source domain (FLD
datasets). However, it is imperative not to use data from
the target domain (patients with repaired CLP) for training
the deep learning model. Instead, our approach involves
the transformation of images from the source domain to
generate synthetic images resembling those found in the
target domain.

B. Image Transformations for Recreated CLP Outcomes

The primary surgical closure of the cleft is usually initiated
within the first 12 months of age, with the aim of achiev-
ing normal speech and swallowing function [1]. However,
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Fig. 3: (a) The 68 facial landmarks proposed by Sagonas et al. [29]
used as standard. The points shown in red are the ones modified in the
transformation process. The interocular distance douter is measured between
the outer points of the eyes. (b) MobileNetV2 building block.

different severity levels of deformities in the orofacial area
of repaired CLP are a potential complication that may
require secondary surgical procedures [32]. Since secondary
procedures can be performed at various stages from infancy
through adulthood, there is a high probability that the patients
with repaired CLP start speech therapy before having the
corrective surgery to reduce lip and nose asymmetry. As a
result, automatic facial landmark detectors that could assist
in speech therapy may inaccurately place landmarks in the
orofacial area of patients with CLP. Therefore, we propose
a tailored technique inspired by common outcomes of the
initial CLP repair surgery to transform facial images of FLD
datasets into images that resemble repaired CLP. We consider
seven transformations: unilateral upper lip asymmetry with
and without Cupid’s bow modification, bilateral asymmetry
of the upper lip, nose deviation, which can appear along with
lip asymmetry, absent Cupid’s bow, and thin upper lip. We
hypothesize that the use of these transformations on images
without CLP can improve the automatic FLD on images of
patients with repaired CLP.

We rely on the 68 facial landmarks (Fig. 3a) proposed by
Sagonas et al. [29] in the standard format for FLD. First,
we triangulate all the points to create smaller regions where
the transformation will be applied. Subsequently, we identify
the points in the orofacial area that will be modified to
resemble the outcomes of CLP repair surgery (red points in
Fig. 3a). Table I provides details of all the transformations,
including the specific modified points and the corresponding
limit values. These limits were selected by experimentation,
such that the minimum value introduces a slight modification
and the maximum value produces a severe modification while
preventing from deforming nearby regions. Then, these limit
values were mapped into the range (0−1) to standardize the
severity level applied in both transformations: those based
on the rhinal ala-columella distance and those based on the
thickness of the upper lip.

The transformations related to modifications of the upper
lip are determined by the thickness of the upper lip (TUL),
which is calculated as the mean distance between points
(51, 62) and (53, 64), as shown in Fig. 3a. An exception is



the transformation resulting in an absent Cupid’s bow, which
involves displacing point 52 to the same height as the cupid’s
bow peaks (CBPs). Regarding the nose transformations, we
measure the distance between the point in the rhinal ala
(e.g. point 32) and the rhinal columella (e.g. point 33) to
define the rhinal ala-columella (RAC) distance suitable for
the nose transformation of the subject. Once the source (i.e.,
original location) and target (i.e., selected level of anomaly)
points are defined, an affine transformation is applied to the
corresponding regions.

TABLE I: Transformations that simulate common outcomes of the CLP first
repair procedure.

Transformation Position Points Limits†

Unilateral asymmetry
Left 51

0.3-1.2
TUL

Right 53

Unilateral asymmetry +
Cupid’s bow modification

Left 51,52

Right 52,53

Bilateral asymmetry Center 51,52,53

Nose deviation

Left 30,31,32,
33,34

0.3-0.8
RAC

Right 30,31,34,
35,36

Nose deviation
with lip asymmetry

Left 30,31,32,
33,34, 51

Right 30,31,34,
35,36, 53

Absent Cupid’s bow Center 52 Height of
CBP

Thin lip Upper
lip

50,51,52,
53,54

Half of the
TUL

† The limit values are then mapped into severity levels ranging from (0−1).

In the training process with the CLP-Trans strategy, one
transformation per image is randomly selected and applied
to the facial image and its landmarks. It is important to
note that not all images within a batch receive the same
transformation.

Fig. 4 demonstrates the process for five of the transforma-
tions. The first row of Fig. 4 illustrates the transformations
applied to an image of a subject without CLP. The figure
shows how the transformations modify different points in
the orofacial area. The second row shows images of patients
with CLP, as examples of the CLP repair surgery outcomes.

C. Deep Convolutional Neural Network

Our proposed approach is built upon the MobileNetV2
network [31], chosen for its lightweight architecture that
can generate predictions even in resource-constrained en-
vironments. This implementation could allow physicians to
execute our face-based solution during therapy on resource-
constrained devices such as smartphones. As illustrated in
Figure 3b, the building block of MobileNetV2 comprises
lightweight depthwise separable convolutions. These con-
volutions divide each standard convolution into three parts:
an expansion layer, a depthwise convolution, and a point-
wise convolution. This division helps in reducing the net-
work’s computational load. The expansion layer takes a low-
dimensional tensor from the preceding block and augments

the output channels by a factor defined as the expansion
factor t. Subsequently, the depthwise convolution filters the
input and diminishes the spatial dimensions if the block
has a stride of 2. Finally, the projection layer employs a
pointwise convolution to decrease the number of channels in
the intermediate feature maps. This strategy creates a linear
bottleneck that encourages the reuse of features. Moreover,
the inclusion of a residual connection, which adds the input
of the building block to its output, assists in maintaining a
smooth flow of gradients throughout the network.

We adapted the MobileNetV2 architecture, which consists
of a total of 17 building blocks, referred to as bottlenecks.
These sequential bottlenecks are preceded by a standard 3×3
convolution with 32 channels and followed by a regular 1x1
convolution, an average pooling layer, and a dense layer.
Additionally, we modified the original output classification
layer of MobileNetV2 to accommodate the FLD task. Ini-
tially, the model had a dense layer with dimension set to
1,000. Our implementation uses a dense layer with dimension
2N , enabling the prediction of 68 2D points, where N =
68 facial landmarks expressed in Cartesian coordinates. In
essence, the task transitioned from a classification task to
a regression task. MobileNetV2 encompasses a total of 53
convolutional layers throughout its architecture. However, it
contains 156 layers if we consider all batch normalization,
dropout, rectified linear unit (ReLU6), and pooling layers.
Further details about the MobileNetV2 architecture can be
found in [31].

We use the MobileNetV2 pre-trained on ImageNet-1k
[9] for image classification as our initial model. Then, we
conducted experiments by reusing the learned weights of
a specific number of layers and retraining a set of layers
for our landmark detection task. The number of trainable
layers serves as a hyperparameter, which will be discussed
in Section V.

IV. EXPERIMENTAL SETTINGS

The CLP-Trans strategy was implemented in PyTorch
and executed in an NVIDIA GeForce RTX 4090 GPU.
This section provides further details about the datasets, the
preprocessing procedure, the selection of hyperparameters,
and performance metrics.
A. Datasets for Facial Landmark Detection

The 300 Faces In-The-Wild Challenge (300W-Challenge)
[29] standardized the landmark configuration of existing
datasets to provide a manually corrected set of 68 points
expressed in Cartesian coordinates for automatic facial points
detection. The datasets for facial alignment contain images
with different resolutions, subjects’ identities, head poses,
facial expressions, lighting conditions, and partial occlu-
sions [29]. Additionally, they share a common characteristic
of having been collected from websites on the Internet,
resulting in images taken under unconstrained conditions.
Four datasets are available for research purposes and can
be downloaded from the Intelligent Behavior Understanding
Group website 1:

1https://ibug.doc.ic.ac.uk/resources/300-W/



(a) Original image from
the HELEN set.

(b) Repaired unilateral
CLP.

(c) Repaired bilateral CLP. (d) Nose asymmetry after
CLP repair surgery.

(e) Absent Cupid’s bow af-
ter repair surgery.

(f) Thin lip after repair
surgery.

Fig. 4: Image (a) displays the original picture before transformations. The top images (b)-(f) imitate the outcomes of CLP repair surgery, while the bottom
images show the orofacial area of patients with repaired CLP. The figure shows the resemblance of the deformity between the modified images at the top
and the images of patients with CLP at the bottom.

• Annotated faces in-the-wild (AFW) dataset [41]: 337
facial images were extracted from 205 images. The
dataset originally considered 6 landmarks, however,
we employ the 68 points re-annotated for the 300W-
Challenge.

• HELEN dataset [17]: contains 2,330 portrait images of
approximate face size of 500 × 500 pixels. The database
has 2,000 images for the train set, and 330 images for
test set. The original 194 points were replaced by the
68 standard landmarks of the 300W-Challenge.

• Labeled face parts in-the-wild (LFPW) dataset [3]:
contains 1,035 images. The database defines 811 images
for the train set, and 224 images for the testing set. The
images may contain occlusions and theatrical makeup.

• IBUG dataset [29]: contains 135 images of highly
expressive faces.

Since the test split of HELEN and LFPW were predefined,
we randomly select 20% of the training samples to form
the development set. This resulted in 1,600 images in the
HELEN training set and 400 images in the development
set, while LFPW had 647 images in the training set and
164 in the development set. We keep the original test set
unmodified. For the AFW and IBUG datasets, which were
not initially divided, we separated them into three parts: 70%
for training, 15% for development, and 15% for testing. For
the AFW corpus, we use 235 images for the training set,
50 for the development set, and 52 for the test sets. For
the IBUG corpus, we use 95 images for the training set, 20
for the development set, and 20 for the testing set. Across
all databases, the sets included a total of 2,577 images for
training, 634 images for development, and 626 images for
testing.

B. Images of Patients with Repaired CLP

We evaluate the CLP-Trans strategy with images of real
CLP patients as well. We obtained 123 images from the
internet, prioritizing websites of surgeons specialized in CLP
[10], [7], hospital websites [20], and non-profit organizations
for CLP treatment [35], [36]. Some images were also col-
lected using target queries on search engines (e.g., “repaired
cleft lip patient”). The 68 facial landmarks were first placed
using the dlib face detector and landmarks estimator [16]
as a starting point. We then performed manual corrections,

with particular attention to the orofacial area. The dlib toolkit
failed to detect a face in six images. For these images, we
manually cropped the faces, placing the facial landmarks
following the standard format shown in Fig. 3a.

C. Preprocessing Approach

To crop the images of the 300W-Challenge datasets, we
rely on the provided bounding boxes, expanding them by
10% of the image dimension on each side. Then, the images
are resized to 224 × 224 pixels to ensure compatibility
with the pretrained weights of the MobileNetV2 model.
The landmarks are mapped to the new dimension. The next
step is the stage of image transformation, followed by a
normalization step. The images of patients with repaired CLP
are cropped based on the dlib face detector and undergo the
same resizing and normalization procedure.

D. Hyperparameters’ Selection

The CLP-Trans strategy is implemented with a batch
size of 16 samples, a learning rate of 0.0001, the mean
square error (MSE) loss function, and Adam optimizer. All
experiments were trained for a maximum of 400 epochs with
an early-stopping patience of 20 epochs, while monitoring
the development loss. We determine some hyperparameters
used in this study by analyzing the experimental results. In
Section V, we demonstrate the performance of the CLP-
Trans strategy under different numbers of retrained layers in
the MobileNetV2 architecture, different severity levels, static
or dynamic transformations of CLP, and diverse augmenta-
tion strategies (random crop and multiple augmentations).

E. Performance Evaluation

We estimate the performance of the predicted landmarks
with the MSE using two approaches. The first approach
adheres to the metric described in [29], which computes
the point-to-point MSE and normalizes it by the interocular
distance douter. We estimate douter as the Euclidean distance
between the outer points of each eye (points 37 and 46 in Fig.
3a). Then, the NMSE point-to-point (NMSEptp) is computed
for each facial image, and the median value for the whole
set is reported as the final metric. The second approach, used
by Dong et al. [11], sums the RMSE of all landmarks and
normalizes the result by douter instead of the point-to-point



difference. The final NMSE for all the 2D points in the face
(NMSEface) is reported as the mean value of the entire set.

V. RESULTS

This section present the outcomes obtained from various
configurations used to evaluate the CLP-Trans strategy. We
compare different implementations to determine the best
approach, with results presented in the order that system
improvements were introduced. Table II compiles the results
of all experiments to facilitate the comparison of the perfor-
mance metrics (we will discuss these results in this section).
Regarding the performance metrics, we document the MSE
loss of the 68 points on the face (MSEface), the MSE loss of
the 15 points in the orofacial area (MSEorof), and the MSE
loss of the 53 remaining points in the face (MSErest). We also
report the normalized metric NMSEface described in Section
IV-E. These metrics allow us to compare the facial landmark
errors in the orofacial area, regions not related to the orofacial
area, and the entire face. Therefore, we can analyze if the
proposed transformations have unintentional artifacts in the
target orofacial region and outside the target orofacial region.

We use several data subsets to report the metrics. The
‘Training’ set can contain transformed images depending
on the experiment. The sets labeled as ‘Development’ and
‘Test’ are never transformed; the ‘Test Mod’ subset contains
the same samples as the ‘Test’ set, but its images were
transformed into synthetic images with repaired CLP. Finally,
the ‘CLP images’ subset contains 136 images of patients with
repaired CLP, as detailed in Section IV-B.

A. Model Trained Without Transformations

As an initial reference, we train the facial landmark system
without CLP transformations to evaluate its performance as
we change the number of retrained layers of the adapted
MobileNetV2 model. The model adapted for FLD contains
a set of pre-trained layers followed by a randomly initialized
dense layer for regression. We need to retrain a specific
number of layers to adapt the model to the FLD task.
Since the layers closer to the input are responsible for the
extraction of low-level features of images such as contours,
edges, angles, and colors, we prioritize reusing these first
layers as they can be considered task-agnostic. Therefore,
we experimented with retraining the latest layers, which are
responsible for extracting high-level features. Fig. 5 shows
the variation of the NMSEface metric when a different number
of layers is retrained for our task. The ‘Test Mod’ set,
which contains faces with synthetic repaired CLPs, reached
its best performance when retraining 96 layers of the adapted
MobileNetV2 architecture. Therefore, we implement the rest
of the experiments by retraining the last 96 layers of the
model.

All metrics associated with the best result of this experi-
ment are shown in the column No-Trans of Table II. Note that
the performance of the system decreases when evaluating it
on the ‘Test Mod’ subset, which contains images modified to
resemble the outcomes of CLP repair surgery, showing the
necessity of our domain transfer approach.

TABLE II: Performance metrics of the CLP-Trans system under different
experimental conditions.

Exp.
Metrics

MSEface MSEorof MSErest NMSEface

T r
ai

ni
ng

No-Trans 16.259 5.447 10.812 2.991

St-Trans 17.973 6.326 11.646 3.151

Dyn-Trans 14.840 5.445 9.396 2.860

Cr-DA 18.849 6.508 12.342 3.083

Mul-DA 12.892 4.989 7.903 2.614

D
ev

el
op

m
en

t

No-Trans 15.734 4.132 12.024 2.813

St-Trans 16.143 4.129 12.014 2.891

Dyn-Trans 14.678 3.592 11.086 2.778

Cr-DA 15.320 3.986 11.334 2.735

Mul-DA 13.739 3.305 10.434 2.564

Te
st

No-Trans 17.339 4.454 12.885 2.860

St-Trans 17.041 4.369 12.672 2.839

Dyn-Trans 17.112 4.591 12.520 2.807*

Cr-DA 15.826 3.951 11.874 2.758*

Mul-DA 14.500 3.715 10.785 2.571**

Te
st

M
od

No-Trans 23.277 5.317 17.960 3.369

St-Trans 21.475 5.358 16.117 3.258

Dyn-Trans 20.898 5.003 15.895 3.159*

Cr-DA 19.076 4.547 14.529 3.057*

Mul-DA 17.370 4.017 13.353 2.829**
C

L
P

im
ag

es
No-Trans 15.279 3.097 12.182 2.417

St-Trans 16.062 2.902 13.160 2.478

Dyn-Trans 13.862 3.039 10.823 2.263*

Cr-DA 12.365 2.834 9.531 2.222*

Mul-DA 10.802 2.580 8.221 2.086**

The asterisk (*) indicates that the approach is significantly better than the model without
transformations (No-Trans), using a one-tailed two-sample proportion t-test with p-
value < 0.05. For the double asterisk (**), the same t-test ensures a p-value< 0.01.

B. Static Transformations

In these experiments, the image transformation type is
randomly selected for every sample of the ‘Training’ set.
However, the severity level of the transformation was set
in a static way, such that all modified samples undergo
a transformation with the same severity. Fig. 6b shows
the NMSEface metric for different values of static severity
levels. The best performance of the St-Trans experiment is
achieved with a maximum severity level of 0.3, for which
we obtain NMSEface = 3.258 in the ‘Test Mod’ set. This
result is better than the best result without transformations
(No-Trans) experiment in Fig. 6a). All the metrics associated
with the best result of this experiment (St-Trans) are shown in
Table II. Although the St-Trans experiment did not improve
the NMSEface metric on real CLP images, we draw attention
to the MSEorof metric, which improves for the ‘CLP images’
set.

Training our model with modifications with the same CLP
severity level in all samples did not improve the performance
for the ‘CLP images’ set. This finding aligns with the nature
of the CLP condition, as the severity of the cleft is not the
same for all patients, and subsequently, the repair surgery
outcome can also vary depending on the initial severity of
the cleft.
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Fig. 5: Performance of the FLD system trained without CLP transformations
while retraining a different number of layers. The best NMSEface perfor-
mance is marked with a dashed red line.
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Fig. 6: Comparison between the CLP-Trans strategy trained without trans-
formations (No-Trans) and the static severity levels of CLP transformations
(St-Trans).

C. Dynamic Transformations

We evaluate a dynamic strategy for the CLP transforma-
tions to address the limitations observed in Section V-B.
The approach, referred to as Dyn-Trans, randomly selects the
severity level for every sample such that it does not surpass
a maximum severity level. Fig. 7b shows the NMSEface
metric for different values of the dynamic severity levels.
While a maximum severity level of 0.9 resulted in the
best performance, severities of 0.1 and 0.3 also produced
comparable results. Fig. 7a shows the best result for the
model with static transformation St-Trans to facilitate the
comparison between both experiments. The dynamic strategy
leads to an improvement in the results. Table II shows all
the metrics associated with the best result of Dyn-Trans. We
highlight that the NMSEface metric improved for all subsets.

D. Random Crop Data Augmentation

The next step in our implementation was to adapt the
well-established data augmentation technique of randomly
cropping images to our FLD task. Based on the ground-truth
bounding box used to crop the facial image, we crop 20%
off the dimension of one of the sides at a time. Then, the
landmarks were displaced to match the cropped image. This
experiment, referred to as Cr-DA, is applied along with the
dynamic CLP transformation strategy using different values
for the maximum severity level.

Fig. 8b shows the performance of the NMSEface metric for
different dynamic severity levels of CLP, along with random
cropping. The best result of the Cr-DA experiment is better
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Fig. 7: Comparison between the best result of the St-Trans experiment
and the performance of Dyn-Trans. Using a dynamic severity level with
a maximum severity of 0.9 leads to better performance than the results
using the St-Trans setting.
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Fig. 8: Comparison between the best result of the Dyn-Trans experiment and
the performance of the Cr-DA experiment, which includes random cropping
along with dynamic severity levels of CLP transformations.

than the performance of the Dyn-Trans experiment (Fig.
8a), demonstrating the benefits of using a traditional data
augmentation technique for computer vision, along with the
CLP transformation technique proposed in this work. Table II
shows all the metrics for the Cr-DA setting. The performance
improves on the images of patients with CLP as well.

E. Multiple CLP Severity Levels

The last step in our implementation consists of a mul-
tiple augmentation approach, referred to as Mul-DA. This
method triplicates the ‘Training’ set by using three different
maximum severity levels for our CLP-Trans strategy. The
approach is applied to each training subset using three
implementations. Case 1 sets the maximum severity levels
to 0.5, 0.3, and 0.1. Case 2 sets the maximum severity levels
to 0.7, 0.5, and 0.3. Case 3 sets the maximum severity levels
to 0.9, 0.7, and 0.5. This approach also uses the random crop
augmentation strategy discussed in Section V-D.

Fig. 9b shows the results for the Mul-DA approaches. The
best performance is achieved with the severity levels of Case
3, which exceeded the best result of the Cr-DA experiment
(Fig. 9a). Table II reports the rest of the metrics for this
evaluation, which indicate clear improvements in the images
of real patients with CLP. This setting is the best result of
our CLP-Trans strategy. We compare this model with FAN
[4], a SOTA system for FLD (Fig. 9c), demonstrating the
superior performance of our system across all subsets.
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Fig. 9: Comparison between the best result of the Cr-DA experiment, the
performance of our best result (Mul-DA experiment), and the performance
of the SOTA facial landmark detector FAN [4].

We applied a one-tailed two-sample proportion t-test to
the NMSEface metric to evaluate the statistical significance
of the improvements. Each experiment that introduced a
transformation or data augmentation technique (St-Trans,
Dyn-Trans, Cr-DA, Mul-DA) was individually compared
with the approach without transformations (No-Trans). We
assert significance when p-value < 0.05. As shown in Table
II, all experiments resulted in statistical significance, except
for the St-Trans experiment, which, despite not satisfying
the threshold, improved the metrics. Furthermore, we point
out that the Mul-DA experiment satisfied a p-value < 0.01,
demonstrating that our best experiment resulted in an even
more significant improvement.

Columns MSEorof and MSErest in Table II show the per-
formance on the points placed in the orofacial area and the
rest of the face, respectively. Although our main concern is
to improve the placement of orofacial points, all experiments
increased the landmark detection of the remaining points on
the face as well. Moreover, the MSEorof metric increased even
when the model is evaluated on non-transformed images.
This result demonstrates that the CLP-Trans strategy is not
biased to have a good performance exclusively in facial
images of patients with repaired CLP.

F. Comparison with Benchmarks for Facial Alignment

We evaluate the best implementation of the CLP-Trans
strategy in the 300W test set, which is a well-known bench-
mark set used by studies on FLD [29]. This benchmark set
comprises 600 facial images taken from indoor and outdoor
spaces in equal proportions. No transformations were applied
to the 300W test set, as we aimed to demonstrate that training
our system with the CLP-Trans strategy does not negatively
impact performance on faces without CLP.

We can make a close comparison between our work and
the performance of the style aggregated network (SAN)
system [11], since it was trained on the same landmark
detection datasets (AFW, HELEN, LFPW, IBUG) used in
our study. SAN uses data augmentation techniques to modify
the color, lighting, and style of the images. SAN achieved
an NMSEface of 3.980 on the 300W test set, while our best
CLP-Trans system achieved an NMSEface of 3.411.

We also compare our work with the winner of the 300W-

Challenge [40] that used a cascade of four CNNs, where
each network refines the prediction of a specific face region.
The approach achieved an NMSEptp of 0.0205 on the 300W
test set. Our system reached a value of 0.046 for the same
metric and test set. An important difference between the
models is that the 300W-Challenge incorporates two addi-
tional databases that we did not use in this study: XM2VTS
database [24] (2,360 images) and FRGC-V2 database [28]
(4,950 images). The results in this section are important since
we need to maintain high accuracies for individuals without
CLP since some repaired CLP cases result in almost non-
visible asymmetry or scars.

VI. CONCLUSIONS

This study introduced the CLP-Trans strategy, aimed at en-
hancing FLD for patients with CLP. The proposed approach
modified facial images without CLP to mimic common
outcomes of CLP first repair surgery in the orofacial region,
eliminating the need to collect facial images of patients.
Training a deep learning model that improves FLD for
patients with CLP without relying on their photos represents
a significant step forward in protecting their privacy while
continuing to create computational tools that can assist in
speech evaluation.

The deep convolutional neural network, MobileNetV2,
was adapted and partially retrained for this task. A total of 96
layers were retrained and five experiments were conducted
to assess the effectiveness of different transformations and
data augmentation techniques.

Employing a dynamic severity level, randomly selected
within the bounds of a maximum parameter, resulted in
enhanced detection performance across all three test sets. The
CLP transformation technique was further enhanced by in-
corporating randomly cropped facial images and introducing
multiple severity levels, effectively triplicating the number
of training images. As a result of these efforts, our best
approach achieved a significant reduction in NMSEface from
2.417 to 2.086 through the implementation of the described
domain transfer technique. Furthermore, the CLP-Trans strat-
egy implemented with the best setting was evaluated on
the 300W-Challenge dataset, demonstrating its competitive
performance compared to standard FLD methods.

For future research directions, we consider applying our
CLP-Trans strategy along with domain adaptation techniques
on the feature-level. We also plan to explore the use of guided
generative neural networks to replicate the outcomes of repair
surgery on patients with CLP. These potential avenues of
research hold the promise of further improving FLD accuracy
and advancing the application of the CLP-Trans strategy in
the field of orofacial analysis for speech treatment of patients
with CLP.
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