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Abstract— Facial landmark detection, often termed as face
alignment, is a well-studied research problem in computer
vision. Nonetheless, face alignment on asymmetrical expressions
has been overlooked in the literature, particularly for unusual
gestures observed in individuals with unilateral facial paralysis.
In this paper, we explore in-domain inversion in a semi-
supervised approach for face alignment and target the detection
of 3D landmarks on symmetrical and extremely asymmetrical
facial expressions due to paralysis. Our approach first leverages
unlabeled face data to synthesize face images, while learning
a compressed representation in the latent space. Then, it
integrates in-domain inversion in the self-supervised stage, to
make the latent space semantically meaningful. This is exploited
in the supervised stage by a 2D face landmark detector,
trained on labeled data. Finally, we extend the pipeline to
3D face alignment and regress the depth coordinate from the
intermediate latent space and the predicted 2D landmarks.
We evaluate and compare our method to related work on
publicly available datasets, and demonstrate that our approach
outperforms the state of the art in the detection of 3D facial
landmarks in our newly introduced dataset of facial paralysis,
ParFace. Our implementation and dataset are available at
https://github.com/jilliam/ParFace.

I. INTRODUCTION

Face alignment aims to register a predefined set of land-

marks on a face image and is a key step to other face analysis

tasks, such as head pose estimation [21], face synthesis [102],

reconstruction [77], animation [22] and palsy assessment

[42]. Many of these landmarks are semantically meaningful,

referring, e.g., to the corners of the eyes and lips, the tip of

the nose and the contours of the eyebrows.

In the past years, many researchers strove to unify and

standardize the set of keypoints used for face alignment

[20], [74], [75], [76], [97]. The most common set defines

68 fiducial points on the eyes, nose, lips, eyebrows and

around the boundary of the face, following the convention

proposed in Multi-PIE [31]. This number differs for profile

faces, where 39 fiducial points are annotated instead. These

landmarks, referred to as 2D facial landmarks, are defined

around the face contour and do not always correspond to the

projection of 3D landmarks onto a 2D image, specifically

when the face is not frontal [45]. Although this convention

is useful for tasks such as face segmentation, it is error prone

for optimization problems, e.g., when minimizing the repro-

jection error [12], [49]. 3D Morphable Models (3DMMs) [8]

and deep architectures have enabled the collection of datasets
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Fig. 1. Our approach learns to synthesize faces from unlabeled datasets
and exploits the latent code to predict the landmarks.

with additional annotations, such as 3D landmarks [9], [96],

[107]. Other annotations, such as the projected 3D landmarks

in the image space, namely 3DA-2D, have also become

available [9], [11], [96].

With the introduction of large-scale datasets [89], [97],

[107] for training deep neural networks (DNN), 2D face

alignment gained a performance boost w.r.t. traditional com-

puter vision approaches, especially for challenging images

with varying illumination, large head poses and occlusion.

These datasets, however, have relatively few samples of

large asymmetrical expressions and even less of peripheral

facial paralysis, or palsy, affecting current face alignment

approaches (see Fig. 2). This limitation has a negative impact

on palsy assessments that rely on face alignment [2], [34].

Such assessments usually require the patient to follow pre-

defined facial expressions, e.g. raising the eyebrows, closing

the eyes and smiling. Then, an asymmetry index is computed

based on measurements between specific areas in the affected

side w.r.t. the unaffected side or the face at rest. An automatic

method for extracting features or parts of the face used in the

evaluations would reduce the associated costs and observer

dependence inherent to manual assessment [37], [55]. In

addition, 2D-landmark-based palsy assessment requires fully

frontal face images [34] or pose correction techniques [37],

[71], while the assessment with 3D landmarks is less prone

to measurement errors since distances are not affected by the

face orientation.

In this work, we aim to detect 3D facial landmarks and
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Image DECA [25] FAN [11] JVCR [99] 3DDFA2 [36]

Fig. 2. Face alignment on patient with palsy. Top row: landmarks extracted
from SOTA architectures. Bottom row: Close-up of the landmarks in the
mouth. Note that the landmarks are defined around the contours of the lips.

address the limitation of current approaches, to target cases

with large asymmetrical facial expressions from patients

with facial palsy, alongside healthy subjects. Our approach

exploits unlabeled face data with and without facial paralysis,

to train an autoencoder and create an intermediate repre-

sentation in a latent vector. In this stage, an in-domain-

inversion module is incorporated to ensure a smooth latent

space and enhance the representation of the expressions. In

the supervised stage, we integrate interleaved transfer layers

to the decoder to regress 3DA-2D landmarks, inspired by the

state of the art (SOTA) 2D face alignment method, 3FabRec

[10]. Our approach additionally enables the detection of 3D

landmarks by means of a newly proposed 3D landmark

detector. By relying on unlabeled data, our approach seeks

to alleviate the cumbersome landmark annotation task, par-

ticularly for clinical data.

The proposed approach is supported by multiple experi-

ments and evaluation on public face alignment datasets, in

addition to a newly introduced facial palsy dataset.

The main contributions of this work are:

• A novel approach for 3D face alignment which encom-

passes cases with large facial asymmetry (see Fig. 1).

• The novel integration of in-domain GAN inversion in

the self-supervised stage, to enhance the detection of

the facial landmarks.

• ParFace, a 3D face alignment dataset on patients with

palsy. ParFace and our source code are publicly avail-

able for research purposes.

• Evaluation on public face alignment datasets, in addition

to the proposed facial palsy dataset, with improvements

w.r.t. the state of the art in 3D face alignment.

II. RELATED WORK

Face alignment has been widely studied in the computer

vision community. We classify face alignment approaches

based on the type of landmarks: 2D and 3D.

A. 2D Face Alignment

These methods consider the face as a 2D object and de-

tect only visible landmarks. Classical approaches encompass

Active Appearance Models (AAMs) [14], [50], [78], Active

Shape Models (ASMs) [15], [16], [67], Constrained Local

Models (CLMs) [79], [94] and Cascaded Regression Meth-

ods (CRMs) [1], [54], [85], [106]. Since 2D landmarks do

not maintain a one-to-one correspondence across large head

poses, they are not robust against extreme head rotations.

More recently, several DNN architectures have been pro-

posed for this task. They can be categorized as coordinate-

regression or heatmap-based methods. The former archi-

tectures regress the mapping between the image and 2D

coordinates, while the latter regress heatmaps for every

landmark. Furthermore, coordinate-based methods are more

computationally efficient, while heatmap-based approaches

usually have higher accuracy [47]. Coordinate-based meth-

ods span DAN [57], DeCaFa [17] and DTLD [60], and

heatmap-based methods include SAN [23], HRNetV2 [82],

LUVLi [58], 3FabRec [10], PIPNet [47], H3R [93], LDEQ

[66] and [104].

B. 3D Face Alignment

These methods integrate 3D face models, either implicitly

or explicitly, to recover a sparse or dense set of 3D facial

landmarks. Some approaches jointly perform face alignment

and reconstruction, with the aid of 3DMMs and large datasets

of 3D faces [25], [32], [36], [49], [61], [62], [72], [84], [73],

[88], [103], [107]. In general, they are more robust to large

head poses and occlusion [45], but show poor generalization

capabilities when data is low in quantity or variability [7].

Classical approaches such as [32] register a 3DMM to a face

image. In [32], the alignment is formulated as a Bayesian

inference problem and is solved using the Expectation-

Maximization algorithm. CRMs have been extended to 3D

face alignment as well [61], [62], [91].

Recent DNN use cascades of CNN regressors either in

model-free [11], [24], [44], [95] or model-based approaches

[49], [84], [103], [107], or 3D model warping functions [7],

[80]. 3DDFA V2 [36] leverages MobileNet [41] for 3DMM

fitting and integrates additional layers for landmark regres-

sion and regularization. SynergyNet [88] uses [36] to extract

the landmarks and refines them with multi-attribute feature

aggregation. 2DASL [84] uses self-supervised-learning to

integrate datasets with only 2D or 3D annotations. FAN [11]

uses stacked hourglass (HG) for 2D face alignment and an

additional ResNet [39] to estimate the depth. [44] and JVCR

[99] regress a volumetric representation of the face from a

CNN based on stacked HG. JVCR additionally uses a 3D

CNN to regress 3D coordinates. [24] exploits StyleGAN2

[52] to detect 3DA-2D landmarks. The generator is modified

based on [10]. 3DSTN [7], a spatial transformer network,

uses a generic 3D model along with Thin Plate Spline

warping to handle unseen faces. [95] extends CLMs, where a

CNN-based local detector exploits the advantages of mixture

of experts. [30] incorporates an attention mechanism from a

spatial transformer to the regression pipeline network in [53],

to refine the landmark detection in eyes, irises and lips. [13]

introduces a queried landmark predictor, allowing detection

of 3D landmark configurations using a 3D face model

reference. [98] proposes a multi-view consistent pipeline for

landmark detection that leverages a multi-view dataset built

using Neural Radiance Field (NeRF) [68].



C. Face Alignment for Palsy

Facial palsy assessment is performed either by segmenting

susceptible regions of the face, such as eyebrows, eyes,

nostrils and mouth [42], [46], [63], [70], by locating the

muscle activation and exploiting action units (AUs) [4], [27],

or by directly detecting facial landmarks. These landmarks

have been used as well to locate AUs [27] or face regions

heuristically [63], [83] or with more elaborated methods as

in [42], [43], [46].

Face alignment for palsy assessment can be divided in two

categories, 2D and 3D landmarks-based. 3D-based methods

usually compute the landmarks from multi-camera systems

[40], [101] and 3D sensors such as Kinect [26], deterring

their implementation in a clinical setting. 2D landmarks, on

the other hand, are extracted from grayscale or RGB images,

captured from easily accessible cameras in smartphones [55],

web [37] or digital cameras [29].

Relevant to this work are pipelines based on 2D images,

which have been achieved with AAMs [18], [92], ASMs

[86], CLMs [2], CRMs such as supervised descent method

(SDM) [37], a parallel cascade of linear regressors [55] from

[1], an ensemble of regression trees [2], [3], [34], [46],

[64] from [54], supervised face alignment networks such as

FAN [2], [33], [42], DAN [38], SAN [83] and other DNN

[43], [90], [92]. In most cases, the alignment is performed

with models that have been trained on images with healthy

subjects, with very few or no samples of large asymmetrical

facial expressions, limiting their scope. The bias in face

alignment on palsy can be tackled with incremental learning

on discriminative models such as [1], and retraining or

fine-tuning existing regression-based pipelines [34] or face

alignment networks, as in [2], [38], [42], with dedicated

datasets from the target population, via transfer learning.

Note that previous works on palsy face alignment use su-

pervised approaches, while our method is semi-supervised

and does not require large labeled datasets with asymmetrical

expressions.

III. METHOD

In this work, we explore the semantically meaningful la-

tent space in a reconstruction-based architecture, to improve

the detection of facial landmarks in faces with a varying

range of expressions. The proposed semi-supervised architec-

ture ParFace-Net is shown in Fig. 3. In the self-supervised

stage, an autoencoder (AE) is trained with unlabeled face

datasets, where the encoder E learns the mapping from the

input data to a low-dimensional intermediate vector z. This

latent code is further enforced to be semantically meaningful,

through the feature disentanglement process introduced by

in-domain inversion. This is achieved by means of the

discriminator D and adversarial training on the E and D,

while the decoder G is frozen. In the supervised stage, a

2D landmark detector learns to regress 3DA-2D landmark

heatmaps from the semantically rich latent code, which in

turn are used to predict the depth coordinate. We further

fine-tune the encoder with the gradients from the landmark

heads to improve the results.

A. Self-Supervised Stage

This stage consists of an adversarial AE, trained on large-

scale face datasets. The encoder E learns to capture the most

important facial attributes in an intermediate latent vector z,

while the decoder G is posed as a generator of a GAN that

reconstructs the original image from the latent code. The AE

is trained on a combination of three losses, as follows:

LAE = λrecLrec + λpercLperc + λadvLadv, (1)

where Lrec is the reconstruction loss, given by the L1
or L2 pixel-wise distance between the input x and the

reconstruction x̂ at G(E(x)); Lperc is the perceptual loss

[48], in (2); Ladv is an adversarial image loss [28], which

enforces the AE to produce realistic faces based on the output

from D; and λ(·) is the respective weight of each loss.

Lperc(x, x̂) =

ϕ
∑

i

1

CiHiWi

||Vi(x̂)− Vi(x)||
2
2. (2)

Ci, Hi, and Wi are the depth, height and width of the

feature map Vi(·) at layer i of a VGG network [81]; x and

x̂ are the input and reconstructed images; and ϕ is the set of

layers from VGG.

We introduce a discriminator D during the face reconstruc-

tion phase, trained with the Wasserstein Loss with Gradient

Penalty (WGAN-GP) [35], formulated as

LD = E[D(x̂)]− E[D(x)] +
1

2
γE[∇D], (3)

where the last term is the gradient regularization and the

hyper-parameter γ = 10. The AE and D are trained using a

similar procedure to GANs, alternating gradient updates.

B. In-Domain Inversion

We leverage the generative capabilities of the AE by

incorporating in-domain GAN inversion. Inspired by Zhu

et al. [105], we follow a domain-regularized approach that

pushes the encoder to create latent code in the semantic

domain. In [105], this module enables semantic editing

of facial attributes such as expression and pose, while an

additional optimization stage improves the reconstructed face

in the pixel level. Unlike [105], our approach does not

seek to edit facial attributes nor aims to create a faithful

reconstruction of the face. Instead, we propose to encode

facial attributes in the latent vector that boost the alignment

in the landmark detectors for a wide range of expressions.

The inversion is achieved in [105] by introducing a

domain-guided encoder to the GANs-based formulation. We

instead exploit the pre-trained encoder E from the previous

step, as shown in red in Fig. 3. The discriminator D is then

used to compete with E, which acts as the domain-guided

encoder and refines the latent space z to be aligned with the

semantic latent space of the reconstruction process. During

this stage, the decoder G is fixed, and E and D take turns to

train with the loss functions in (1) and (3), respectively. To

that end, the same unlabeled data as in the self-supervised



Fig. 3. Architecture of ParFace-Net (PF-Net). Our pipeline consists of a self-supervised stage to train an autoencoder, where the latent code z is disentangled
via in-domain inversion. In the supervised stage, z is leveraged by the landmark detector to retrieve 3DA-2D and 3D landmarks from dedicated networks.

stage is used, where E is fed the input image x, and the

input of D is given by x and the reconstruction x̂.

The asymmetrical features in the latent code from palsy

patients are refined in this stage, without affecting the re-

construction of symmetrical faces. Hence, the same trained

model could be used to align the landmarks during different

levels of palsy, to continuously track the recovery.

In contrast to [105], we do not apply the final optimization

step to enhance the output of the reconstruction, since we do

not aim to create an accurate reconstruction in the pixel level.

C. Supervised Stage

The supervised stage is composed of a 3DA-2D and a 3D

landmark detector, where all the face information learned in

the self-supervised stage and refined through the in-domain

inversion module is available for generalized usage across

various landmark datasets.

1) 3DA-2D Landmark Detector: In this stage, the land-

mark detector maps the disentangled latent code z to 2D

heatmaps that represent the probability map of each landmark

location. During training, the parameters of the autoencoder

are fixed and the layers of the decoder G are interleaved

with 3 × 3 convolutional layers, inspired by 3FabRec [10].

The last convolutional layer that produces the face image is

then superseded by a convolutional layer that provides the

heatmaps, as shown in Fig. 3.

We propose to adopt the adaptive wing loss (AWing)

[87] as the heatmap prediction loss, instead of the mean

squared error (MSE) from [10]. Since background pixels on a

heatmap dominate over foreground pixels, this loss function

penalizes small errors on foreground pixels while tolerating

small errors on background pixels. It is formulated as

L2D(h, ĥ) =







ω ln

(

1 +
∣

∣

∣

h−ĥ
ϵ

∣

∣

∣

α−h
)

if |(h− ĥ)|< θ

A|h− ĥ|−C otherwise,
(4)

where h and ĥ denote the ground truth and predicted heatmap

pixel values, and ω, θ, α, and ϵ are positive values. A and

C are added to smooth the loss function at |h− ĥ|= θ.

2) 3D Landmark Detector: We introduce a 3D landmark

detector to regress the depth coordinate of the 3DA-2D land-

marks. It takes as input the concatenation of the intermediate

latent vector and the predicted 3DA-2D landmark heatmaps.

TABLE I

PUBLICLY AVAILABLE DATASETS USED FOR TRAINING THE

AUTOENCODER (AE), THE 2D AND 3D LANDMARK DETECTORS, AND

FOR TESTING THE CURRENT MODEL.

Dataset
Images / Train Test
Frames AE 2D 3D AE 2D 3D

CelebA [65] 202599 ✓ - - - - -
AffectNet [69] 291650 ✓ - - - - -
Menpo 2D [97] 8954 ✓ - - - - -
LS3D-W [11] 7200 ✓ - - - - -
FFHQ [51] 70000 - - - ✓ - -
NeuroFace [2] 3306 ✓ - - - - -
MEEI [29] 12050 ✓ - - - - -
ParFace (Ours) 4200 ✓ - - - - ✓

300W-LP [107] 61225 ✓ - ✓ - - -
AFW [108] 337 - ✓ - - - -
HELEN [59] 2330 - ✓ - - ✓ -
LFPW [6] 1035 - ✓ - - ✓ -
300W [76], [75], [74] 600 - - - - ✓ -
iBUG [76], [75], [74] 135 - - - - ✓ -
WFLW [89] 10000 - ✓ - - ✓ -
AFLW2K-3D [107] 2000 - - - - - ✓

This detector uses the MSE loss, defined as

L3D(y, ŷ) =
1

N

N
∑

i=1

(yi − ŷi)
2, (5)

where N is the number of landmarks, and y and ŷ are the

ground truth and predicted depth values, respectively.

3) Encoder Fine-tuning.: This strategy proposes to further

optimize the encoder E along with the Interleaved Transfer

Layers (ITL) in tandem [10]. The fine-tuning encourages

the encoder to embed more features in the latent code that

enhance the landmark predictions. By integrating this step,

the identity of the reconstructed face no longer resembles

the original image and the reconstruction tends towards an

average face, as shown in Fig. 1. Nonetheless, other attributes

such as the expression and pose are enhanced.

IV. EXPERIMENTS AND RESULTS

ParFace-Net was implemented in Python using PyTorch.

The AE was trained on a Nvidia A100, while the face

alignment networks were trained on a Nvidia RTX2080-Ti.

A. Datasets

ParFace-Net is trained on well-known public datasets on

face analysis. Table I lists the datasets and in which stage

they were used. In the self-supervised stage and during the



in-domain inversion, the AE is trained with multiple datasets,

without any type of landmark annotation. We introduced

palsy datasets in these stages, such as the Toronto NeuroFace,

MEEI and the unlabeled set of ParFace. The 3DA-2D and 3D

landmark detectors are trained with 300W-LP. We separately

train the 3DA-2D detector with 2D landmarks, to investigate

the performance on 2D face alignment. These results are

reported in the Supplementary Material.

Palsy Dataset. We introduce ParFace, a new dataset on

palsy face alignment with 3D landmarks annotations in video

sequences. We collected 28 videos from YouTube of 150

frames each, where the subjects are usually talking to the

camera or making a wide range of facial expressions. The

videos have varying resolution and cover a wide range of

ages, ethnicity, poses, illumination settings and backgrounds.

We provide 68 landmarks annotations for 1350 frames in 9

videos, for a total of ∼92K annotations.

We developed an annotation tool, which provides an initial

3D landmark estimation by 3D-FAN [11]. Since 3D-FAN

was trained on datasets without palsy, each landmark was

manually refined to match the asymmetrical facial expres-

sions and provide high quality annotations. This refinement

affected most of the 3DA-2D landmarks, and less the depth

coordinate. Some sample images are shown in Figure 5 and

in the Supplementary Material.

The annotated set of ParFace can be used as a benchmark

to evaluate palsy alignment, as in Section IV-E, or to fine-

tune semi- or fully supervised approaches as in Section IV-G.

The unlabeled set of ParFace can be used for training semi-

or self-supervised architectures, similarly to ParFace-Net.

B. Implementation Details

The AE takes as input a cropped version of the face. For

labeled datasets, we use the ground truth landmarks to com-

pute the bounding box, following related works. Otherwise,

we use the MTCNN face detector [100]. Faces with a height

less than 100px are discarded. The data is augmented with

random horizontal flipping (50%), translation (±4%), scale

jittering (94% to 103%) and rotation (between ±45◦).

1) Model Architecture: The autoencoder consists of a

ResNet-18 [39], which encodes a 99-dimensional latent

vector, and an inverted ResNet-18 [5] for decoding. The

perceptual loss uses layers ϕ [3, 8, 15, 22] of a VGG-19

[81] pre-trained on ImageNet [19]. In the supervised stage,

the 3DA-2D landmark detector is an inverted ResNet-18

that outputs landmark heatmaps of size 128 × 128 with

N channels, where N is the number of landmarks. The

3D landmark detector is a ResNet-18, which regresses the

depth. This coordinate is normalized to lie between [-1, 1]

to achieve faster convergence and numerical stability.

2) Training Details: We use the Adam optimizer [56]

with a learning rate of 2e-5, β1 = 0.0 and β2 = 0.999. The

autoencoder is trained with input and output images of size

256 × 256. We train for 50 epochs with (1), where Lrec is

the L2 loss, followed by 50 epochs with the L1 loss as Lrec.

After that, we fix the decoder G and optimize the encoder E

for feature disentanglement against the discriminator D with

the L2 loss as the Lrec, for 50 epochs.

The 3DA-2D landmark detector is trained for 100 epochs

to predict the heatmaps. We fine-tune the encoder with

gradients from the landmark head for 100 epochs. A similar

procedure is followed in the experiments to train the 2D

landmark detector. For 3D face alignment, the 3D landmark

detector is trained with the ground truth 3DA-2D landmark

heatmaps for 50 epochs.

C. Evaluation Metrics

Following the standard protocol, we adopt the normalized

mean error (NME) to evaluate 3DA-2D face alignment on

ALFW2000-3D and ParFace. We additionally report the fail-

ure rate (FR) and area under the curve (AUC) at 10% of the

Cumulative Error Distribution (CED) on ParFace. 3D face

alignment is evaluated using the ground truth error (GTE)

on AFLW2000-3D and ParFace. The GTE is equivalent to

the NME, but evaluates the full 3D coordinates. The GTE is

normalized by the inter-ocular (IO) distance, while the NME

is normalized by the square-root of the bounding box size

enclosing the landmarks, following related works. We report

the standard deviations σ of the NME and GTE in ParFace.

D. Evaluation on AFLW2000-3D

3DA-2D and 3D face alignment are evaluated on the

widely used benchmark AFLW2000-3D, where the landmark

detectors are trained using 300W-LP. We employed the AE

with in-domain inversion to train the landmark detectors. Fur-

thermore, we refined the 3DA-2D landmarks with encoder

fine-tuning. The results are shown in Table II.

We observed that our models outperform the SOTA in

3DA-2D face alignment (NME) for frontal and near frontal

faces (0 to 30◦) and our ParFace-Net with the AWing loss

has the 2nd best GTE on 3D face alignment for the reported

methods. For larger poses, we noticed a decreased perfor-

mance of ParFace-Net. This could be attributed to the small

portion of non-frontal faces in the self-supervised stage,

where face semantics are learned mostly for near-frontal

poses. We also observed that model-based approaches tend

to be more robust to large head poses, since they are trained

with additional 3DMM parameters such as head orientation

and face shape. However, as shown in the next section,

model-based methods do not cope well with a wide range of

facial expressions, including asymmetrical expressions.

E. Evaluation on ParFace

The annotated set of ParFace is employed to evaluate our

models from Section IV-D. Note that they were trained on

300W-LP and without annotated palsy data. We additionally

report the performance of different SOTA model-based and

model-free methods for 3D face alignment, which have also

been trained on 300W-LP or related 3DMMs datasets. To

discard alignment errors due to face detection inaccuracies,

we replaced the face detectors in every method and provided

the bounding boxes from the ground-truth landmarks to crop

the input images. The results are shown in Table III.



TABLE II

NME (3DA-2D) AND GTE (3D) ON AFLW2000-3D, FOR DIFFERENT

YAW ANGLES. † REPORTED IN [99]. METHODS WITH ∗ ARE

SEMI-SUPERVISED.

Method
NME↓

GTE ↓

0 to 30 30 to 60 60 to 90 All

M
o
d
el

-b
as

ed

3DDFA [107] 2.84 3.57 4.96 3.79 -
SPDT [72]∗ 3.56 4.06 4.11 3.88 -
3DDFA V2 [36] 2.63 3.42 4.48 3.51 -
2DAL [84]∗ 2.75 3.46 4.45 3.55 -
SADRNet [73] 2.66 3.30 4.42 3.46 -
SynergyNet [88] 2.66 3.30 4.27 3.41 -

M
o
d
el

-f
re

e

SDM [91]† 3.67 4.94 9.76 6.12 -
3D-FAN [11]† 2.77 3.48 4.60 3.62 7.45
JVCR [99] 2.94 3.46 4.53 3.64 7.28

StyleGAN-FA[24]∗ 2.65 3.62 4.89 3.72 -
PF-NetMSE

∗ 2.62 3.65 4.80 3.69 7.42
PF-NetAwing

∗ 2.61 3.67 4.74 3.67 7.38

Fig. 4. CED curves for 3DA-2D and 3D face alignment of models tested on
ParFace. Our models are ’PF-Net: MSE’ and ’PF-Net: Awing’, represented
with dotted lines.

The CED curves for the normalized 3DA-2D and 3D

RMSE are shown in Figure 4. Our models achieve the

lowest NME and FR, the highest AUC and the 2nd and

3rd lowest GTE on ParFace. As mentioned in Section IV-

A, for labelling ParFace, an initial landmark prediction was

computed using 3D-FAN. While the 3DA-2D landmarks

were heavily refined, the z coordinates were refined to a

lesser extent. As expected, 3D-FAN has the lowest GTE in

this dataset. Qualitative results are shown in Figures 5 and 6.

Table III and Figure 5 show that model-free methods have

in general a better performance and are more flexible on

asymmetrical expressions than model-based pipelines.

TABLE III

EVALUATION ON PARFACE. THE NME, AUC AND FR EVALUATE

3DA-2D LANDMARKS, WHILE GTE EVALUATES 3D ALIGNMENT.

Method NME ± σ
↓ AUC

↑
10

FR
↓
10

GTE ± σ
↓

M
o

d
el

-
b

as
ed

3DDFA V2 [36] 4.65 ± 2.51 55.14 1.11 11.18 ± 5.98
SynergyNet [88] 5.49 ± 4.96 49.48 1.70 13.89 ± 8.48
DECA [25] 4.24 ± 1.19 57.81 0.88 23.27 ± 6.27

M
o

d
el

-
fr

ee

3D-FAN [11] 4.26 ± 3.64 59.83 0.96 7.06 ± 6.20
JVCR [99] 4.00 ± 2.79 61.87 1.26 8.79 ± 4.91
PF-NetMSE 3.83 ± 3.19 62.74 0.96 8.14 ± 4.60
PF-NetAWing 3.79 ± 2.98 62.81 0.82 8.05 ± 4.37

F. Runtime and Model Parameters

We measured for ParFace-Net a runtime of ∼230FPS

on average for 1K repetitions, for 2D and 3DA-2D face

alignment, on a Nvidia RTX2080-Ti. To estimate the full

3D coordinates, ParFace-Net runs at ∼156FPS.

ParFace-Net is composed of two ResNet-18 and an in-

verted ResNet-18, with a total of ∼24.14M parameters. 3D-

FAN is composed of 4 HG networks with ∼24M parameters

and a ResNet-152 with ∼58.5M parameters to compute the

depth coordinate (in total ∼82.5M). Likewise, JVCR uses

4 stacked HG and an additional network to map the voxels

to coordinates, with 32.47M parameters in total. SynergyNet

has 4.6M parameters, 3DDFA V2 3.27M and DECA uses

two ResNet-50 with more than 25M parameters each and

multiple decoders to retrieve the parameters of the 3DMM.

G. Ablation Study

We evaluate the contribution of each module in the face

alignment process.

1) Training the Self-Supervised Stage: The impact of

the self-supervised stage in the landmark detection task is

analyzed. For that purpose, we trained the landmark detectors

omitting the self-supervised stage and only the encoder is

pre-trained on ImageNet. Since the latent code does not

encode face information, the in-domain inversion is not

applied either. The encoder is later fine-tuned after training

the 3DA-2D landmark detector, as detailed in Section III-C.

The results are shown in Table IV, without check marks in

the categories ’Self-Supervision’ and ’In-Domain Inversion’.

For every metric, there is a large decline in the performance

when the self-supervised stage is omitted.

2) Training with In-Domain Inversion: We investigated

the effect of the in-domain inversion module as well. To that

end, we trained the landmark detectors before and after the

in-domain inversion is applied. The results for 3DA-2D and

3D face alignment are shown in Table IV. We observed that

in-domain inversion boosted the performance in every metric

w.r.t. the model without inversion. The improvement is more

noticeable for ParFace, both in the NME and GTE.

3) Effect of AWing Loss: We additionally examined the

performance of the 3DA-2D landmark detector using the

MSE loss and the proposed AWing loss. The results are

reported in Table IV. During the experiments, we observed

that the MSE loss converged faster, but in overall the AWing

loss leads to improved accuracy in most of the metrics. We

hypothesize that this is due to AWing loss being more sensi-

tive to foreground pixels than background pixels, considering

that background pixels predominate in the heatmaps.

4) Training the AE with Portions of the Data: As an

additional ablation study, we explore how the performance of

the landmark detectors are affected when the self-supervised

stage is trained with different portions of the data. The quan-

titative results for AFLW2000-3D and ParFace are reported

in Table V. To that end, we trained the AE with multiple

combinations of the datasets from Table I, where the total

amounts to ∼590K images. Note that only the models with

3% and 100% included palsy data, and that all the models



Ground truth 3D-FAN [11] JVCR [99] 3DDFA V2 [36] DECA [25] SynergyNet [88] PF-NetMSE PF-NetAWing

Fig. 5. Face alignment on ParFace. 3D-FAN, JVCR, 3DDFA V2 and SynergyNet were trained with 300W-LP, while DECA uses pseudo ground truth
from 3D-FAN. 3DDFA V2, DECA and SynergyNet are trained on datasets for face reconstruction to fit 3DMMs as well.

TABLE IV

ABLATION STUDY ON AFLW2000-3D AND PARFACE. WE EVALUATE THE IMPACT OF THE SELF-SUPERVISED STAGE, IN-DOMAIN INVERSION AND

THE LOSS FUNCTION FOR LANDMARK DETECTION. THE NME AND GTE ARE AVERAGED IN EACH DATASET ON THE TOTAL NUMBER OF IMAGES.

Self- In-Domain Alignment AFLW2000-3D ParFace

Supervision Inversion Loss NME ± σ
↓ AUC

↑
10

FR
↓
10

GTE ± σ
↓ NME ± σ

↓ AUC
↑
10

FR
↓
10

GTE ± σ
↓

- - MSE 3.91 ± 3.94 65.31 3.56 8.81 ± 6.87 4.24 ± 3.27 58.39 1.11 9.16 ± 4.89
✓ - MSE 3.23 ± 2.90 69.40 1.50 7.77 ± 6.22 3.96 ± 3.34 61.75 0.96 8.40 ± 4.87
✓ ✓ MSE 3.15 ± 2.96 70.17 1.50 7.42 ± 5.33 3.83 ± 3.19 62.74 0.96 8.14 ± 4.60

- - AWing 3.96 ± 3.97 64.81 3.65 9.03 ± 6.93 4.46 ± 3.56 56.17 1.04 9.47 ± 5.27
✓ - AWing 3.19 ± 2.95 69.78 1.45 7.45 ± 5.07 3.94 ± 3.21 61.76 0.96 8.41 ± 4.75
✓ ✓ AWing 3.14 ± 2.92 70.22 1.35 7.38 ± 5.05 3.79 ± 2.98 62.81 0.82 8.05 ± 4.37

3D-FAN JVCR 3DDFA V2 DECA SynergyNet PF-Net PF-Net
[11] [99] [36] [25] [88] MSE AWing

Fig. 6. 3D face alignment on ParFace with different methods of the SOTA.
Ground truth in red and predictions in green.

were trained with in domain inversion, the AWing loss and

encoder fine-tuning.

As part of the experiments, we trained the AE only with

palsy datasets at our disposal: Toronto NeuroFace, MEEI and

the unlabeled set of ParFace. The results correspond to 3% of

the total data in Table V. From this experiment, we observed

a comparable performance on ParFace with the model trained

with 1%, with a minimal improvement on the model trained

with palsy data. However, on AFLW2000-3D, the model

trained with palsy data showed in general a slightly lower

performance than the model trained with only 1% of the data.

The main reason is that the Toronto NeuroFace and MEEI are

clinical datasets collected in controlled conditions, with little

diversity in terms of pose, lighting and background setting.

Therefore, a model trained with relatively few images in the

wild (in this case from ParFace), would not perform well on

challenging images with large poses, occlusion and varying

lighting, such as in AFLW2000-3D, due to insufficient data

to generate a compact face representation embedded in the

latent code.

Overall, the alignment performance shows a gradual im-

provement as more data is added to the self-supervised

stage. These results lead to the assumption that the landmark

detectors can be further enhanced as more unlabeled data

with large diversity is used for training the AE.

5) Training with Labeled Palsy Data: The results in

Section IV-E were computed from models that were not

trained using labeled data from ParFace. To evaluate the

influence of labeled palsy data in our approach, we split the

dataset into a training and test set and fine-tune the previously

trained models with a portion of the data. The results are

shown in Table VI. We use 6 sequences for training and

3 for testing. We split the training set into 6 parts, each

containing N number of sequences, where N is in the range

[1,6]. The number of sequences used are added as numerals

in the Table. MSE-0 and Awing-0 use the models trained



TABLE V

ABLATION STUDY ON 3DA-2D AND 3D FACE ALIGNMENT AFTER TRAINING THE SELF-SUPERVISED STAGE WITH PORTIONS OF THE DATA. THE AE IN

∗ WAS TRAINED ONLY WITH PALSY DATA.

%
AFLW2000-3D ParFace

NME ± σ
↓ AUC

↑
10

FR
↓
10

GTE ± σ
↓ NME ± σ

↓ AUC
↑
10

FR
↓
10

GTE ± σ
↓

0 3.96 ± 3.97 64.81 3.65 9.03 ± 6.93 4.46 ± 3.56 56.17 1.04 9.47 ± 5.27
1 3.57 ± 3.36 67.31 2.45 8.20 ± 5.94 4.20 ± 3.42 58.87 1.19 9.06 ± 5.15
3∗ 3.58 ± 3.24 66.97 2.65 8.16 ± 5.59 4.19 ± 3.31 58.86 0.89 9.06 ± 4.94
13 3.35 ± 3.09 68.94 1.70 7.70 ± 5.42 3.84 ± 2.85 61.89 0.89 8.65 ± 4.34
34 3.26 ± 2.94 69.35 1.55 7.55 ± 5.07 3.96 ± 3.33 61.52 0.82 8.30 ± 4.94
97 3.17 ± 2.96 70.07 1.30 7.46 ± 5.14 3.82 ± 2.98 62.38 0.82 8.15 ± 4.41

100 3.14 ± 2.92 70.22 1.35 7.38 ± 5.05 3.79 ± 2.98 62.81 0.82 8.05 ± 4.37

TABLE VI

EVALUATION ON PARFACE AFTER FINE-TUNING WITH TRAINING SETS

FROM PARFACE. THE NUMBER OF SEQUENCES USED FOR FINE-TUNING

ARE ADDED AS NUMERALS ADJACENT TO THE LOSS.

Method NME↓ AUC
↑
10

FR
↓
10

GTE↓

MSE-0 3.99 61.10 1.11 8.79
MSE-1 4.41 56.81 1.11 9.70
MSE-2 4.13 58.63 0.44 8.98
MSE-3 3.60 63.70 0.44 8.34
MSE-4 3.45 65.22 0.44 8.03
MSE-5 3.43 65.39 0.44 7.93
MSE-6 3.22 67.43 0.44 7.99
AWing-0 3.92 61.45 0.89 8.72
AWing-1 4.17 58.70 0.89 8.94
AWing-2 4.08 59.06 0.44 8.50
AWing-3 3.77 62.11 0.44 8.44
AWing-4 3.55 64.12 0.22 7.87
AWing-5 3.53 64.47 0.44 8.10
AWing-6 3.18 67.77 0.22 7.44

Fig. 7. Failure cases.

without palsy data, to evaluate the test set of ParFace (450

images in total).

The results show an overall improvement when more data

is added to fine-tune the models. By adding 6 ∗ 150 = 900
training images with palsy data to a model trained with more

than 61K labeled images (representing less than 2%), we

obtained performance gains of around 20% in the NME and

more than 10% in the GTE.

These experiments validate the use of ParFace to fine-tune

semi- or fully supervised DNN for 3DA-2D and 3D face

alignment on asymmetrical facial expressions.

H. Discussion and Limitations

Similarly to most heatmap-based methods for face align-

ment, our approach fails under extreme occlusions, as shown

in Figure 7. Other failure cases occur when the face synthesis

fails due to unusual facial expressions, large head poses,

lighting and low contrast. 3DMMs-based methods are more

robust in such cases by keeping the spatial structure of the

landmarks, even if the face is not properly aligned. However,

they are not able to align the landmarks correctly for unseen

faces, such as in asymmetrical facial expressions (see DECA

in Fig. 5).

We noticed that our method heavily depends on the

training data in the self-supervised stage. By using datasets

with less diversity in terms of pose, expression, occlusion

and illumination, the performance of the landmark detectors

drops. The dependency on unlabeled data is not to be seen

as a drawback, since the generation of such datasets is

much less expensive than labeled data. We also observed

that using a small set of unlabeled palsy faces (∼3% of the

total amount, see Table I) to train the AE enabled the in-

domain inversion module to encode asymmetrical features

in the latent vector, improving the landmark detection.

Dedicated architectures for HQ face reconstruction such

as StyleGAN2 [52] could replace the inverted ResNet-18,

as in [24], to improve the reconstruction. This comes at

a cost of increased complexity and trainable parameters

in the pipeline. While StyleGAN2 has ∼28M parameters

and a computational complexity of 143.15 Giga Multiply-

Accumulate Operations (GMACs), ResNet-18 has ∼11M

parameters and a complexity of 1.82GMAC.

V. CONCLUSIONS

This work introduced a pipeline for 3D face alignment,

targeted to faces with symmetrical and asymmetrical expres-

sions. We propose a semi-supervised architecture which ex-

ploits large unlabeled datasets and integrates face alignment

with smaller labeled datasets. We explore the latent space

in the self-supervised stage, and optimize the encoder to

produce a disentangled latent space with in-domain inver-

sion. Our landmark detector uses the AWing loss to regress

3DA-2D landmark heatmaps and a newly introduced separate

branch computes the depth of the 3D landmarks. A future

direction would be to exploit additional 3DMMs parameters,

to enable the autoencoder to learn the pose, expression, and

shape from 2D images under large head poses and extreme

occlusion.
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