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Abstract— Current models of gaze target estimation can
present excellent performance, but the success of these models
relies on large-scale annotated datasets. In real-world appli-
cations, obtaining large amounts of labelled data is often
impractical due to the high cost of annotation. Therefore, in
this paper, we investigate a relatively unexplored problem and
introduce a semi-supervised method for gaze target estimation,
which uses a small number of labels without compromising
performance. We achieve this by leveraging the visual saliency
map, which has been widely used in previous gaze target
estimation studies. More explicitly, unlike previous studies, we
build a multi-task model which can learn visual saliency and
gaze target simultaneously. To train this model, in the lack of
real labels, we propose a method to generate pseudo labels by
combining the state-of-the-art approaches for visual saliency
estimation, object detection, and head pose estimation. First,
we train the multi-task model with the pseudo labels. Then,
to compensate for the information loss due to the lack of
reliable annotation, we fine-tune the network using a small
number of real labels. We validate the performance of our
model by creating a set of baseline models for comparison
on two publicly available datasets, namely, GazeFollow and
VideoAttention. The experimental results show that our method
achieves the best performance in semi-supervised settings, as
well as a competitive performance as compared to the existing
fully supervised models. The code of the proposed method
is available at https://github.com/PengC98/Weakly-supervised-
gaze-target-estimation

I. INTRODUCTION

Gaze behaviour is an important social signal in human-
human communication because of its rich non-verbal in-
formation [8]. Therefore, how to automatically infer the
visual attention of people in third-person images has attracted
significant attention from the multidisciplinary research com-
munity. Automatic gaze analysis plays a crucial role in
psychological research [7], [26], teaching quality assessment
[41], [29], driving assistance [17], [39], and human move-
ment analysis [10], [21], [33].

In recent years, many methods have been proposed by re-
searchers to solve the problem of gaze target estimation, such
as [30], [4], [5], [16], [25], [12], [22]. These methods show
excellent performance on publicly available datasets, such
as GazeFollow [30] and VideoAttention [5]. However, the
success of these methods relies on large amounts of labelled
data. In reality, acquiring large-scale data and annotation is
often very expensive and labour-intensive. Therefore, it is
increasingly needed to develop models that can understand
images with minimal supervision in gaze target estimation
and beyond.
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Fig. 1. Visualization of the visual saliency map, real label and pseudo label.
In the first column, the yellow circle indicates the target person whose gaze
is being predicted.

As shown in [30], [5], there is a synergy between visual
saliency estimation and gaze target estimation tasks. More
explicitly, in most cases, there is a relationship between the
objects that people look at in a scene and the objects that
are salient in it. To address the aforementioned gap in the
literature, in this paper, we tap into this relationship and
propose a semi-supervised method for gaze target estimation
using visual saliency information.

To achieve this, we develop an approach to tackle two
important challenges. First, it is a challenge to introduce vi-
sual saliency information into the gaze target estimation task.
In order to make full use of the visual saliency information,
unlike the methods proposed in [30], [4], we formalise it as a
multi-task learning problem. Specifically, we build a model
with a two-branch architecture. This model performs both
visual saliency estimation and gaze target estimation given
the same image as input. This structure forces the model to
distil knowledge from the visual saliency prediction task and
use it for the gaze target estimation task.

Second, to train the multi-task model in the lack of real
labels, we propose a method for generating pseudo labels. As
shown in Fig. 1, the visual saliency map contains not only
information related to the gaze target but also a large amount
of unrelated information. Therefore, the visual saliency map
cannot be used as pseudo labels directly. To address this
issue, inspired by [1], we scan the entire image to identify all
potential gaze regions related to the target. In contrast to [1],
who calculate front-most points from 3D spatial relationships
between pixels, our approach aims to go beyond detecting the
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front-most points and semantically understanding the images.
We start with semantic segmentation of the image, treating
the instance segmentation masks as the possible gaze regions
for the target person. Then, we integrate the chosen regions
with visual saliency information to create pseudo labels.
Our intuition is that the target person’s attention should be
correlated with the salient objects intersecting with their
gaze direction [30]. These pseudo labels together with the
visual saliency maps are used to train the multi-mask model,
helping our model learn how to exploit and distinguish visual
saliency information in the absence of real labels.

In order to show the performance of our method, we
design three experiments. Firstly, we build three baseline
models based on the current state-of-the-art models of gaze
target estimation and compared them with our method under
semi-supervised conditions. The experiment demonstrates
that our model can show superior performance compared
to baseline models. Secondly, we compared our models
with current state-of-the-art fully supervised models. In the
absence of labels, our model even achieves the performance
of some fully supervised approaches. Finally, we also design
ablation experiments to show the necessity of introducing
visual saliency information and pseudo-labels.

Taken together, the main contribution of our paper can be
summarized as follows:

• We present a semi-supervised learning framework for
gaze target estimation. To the best of our knowledge,
this is the first semi-supervised learning method applied
to this domain.

• We propose a novel multi-task learning approach that
can use visual saliency information to guide model
inference about gaze information.

• We introduce a method for pseudo-label generation,
which can be used to aid the model training.

• Our method exhibits the best performance in compari-
son with the baseline models. It even outperforms some
fully supervised learning models, when a small number
of real labels are used for training only.

II. RELATED WORK

A. Gaze Target Estimation

The task of gaze target estimation was first proposed in
[30], which aimed to enable the computer to recognize the
object being observed by the target person, given an image
and their head position. In the early years, the researchers
made full use of the 2D image data to construct the model
by extracting the person’s face features and scene features
separately and then combining these two features [30], [4],
[5], [38], [31], [22]. Among them, Recasens et al. [30] and
Chong et al. [4] treated this task as a one-hot patch classifi-
cation. However, the scale of the patches is very coarse and
can introduce errors in the model predictions. Then, in [22],
Lian et al. transformed the gaze target estimation task into a
heat map regression task. Meanwhile, instead of converting
the head features into a latent space like in previous studies,
they predicted the pose of the head image to generate a Gaze

Direction Field, which can enhance the robustness of the
network. In a recent study, Miao et al. [25] combined patch
prediction and heat map regression to propose patch distribu-
tion prediction to improve the performance of the model on
datasets with large variances in annotations. All the methods
listed above can only estimate the gaze target of one person
at a time. To address this, Jin et al. [16] proposed a model
that can handle multiple people in the scene at the same
time, and introduced a numerical regression method to reduce
the quantification error caused by heat map prediction. After
that, Tu et al. [37] proposed an end-to-end transformer-based
model to predict the gaze targets and their head positions and
postures for all the people in the scene.

There is another line of work focusing on gaze estimation
in 3D using 2D information. Fang et al. [9] first estimated
the depth information of the scene from 2D images, and then
proposed a Dual Attention Module model combining the 2D
field of view of the target person and the depth information
of the scene. Bao et al. [1] also utilised this idea, but with
the difference that after estimating the 3D point cloud using
2D images, they used the 3D gaze direction information to
estimate the probability of the front-most point in the point
cloud, which was being gazed at by the target person. Hu et
al. [15] constructed a model based on a graph neural network
to restore the positional relationship of each object in the
scene using the estimated depth information. They inferred
the probability of gazing at an object in the scene from these
positional relationships.

However, a large amount of annotation data is necessary
for the methods described above. In fact, fully annotating
social interaction images with cluttered backgrounds is a
very difficult task that requires massive resources. Therefore,
the introduction of semi-supervised learning is essential to
reduce the effort and cost of labelling a large number of
images, hence expanding the practical applications.

B. Semi-supervised Learning

In reality, it is easier to collect data than to annotate them.
Therefore, in order to make full use of the large amount
of unlabelled data, semi-supervised learning has gained a
lot of attention from researchers [3], [42], [20], [19], [35],
[40], [2], [34]. In the field of gaze estimation, a number
of semi-supervised and weakly supervised methods are also
emerging. In [17], Kasahara et al. constructed a semi-
supervised learning framework that can predict the target of
a driver’s gaze by exploiting the consistency of the driver’s
gaze direction with the salient information of the scene.
Ghosh et al. [11] used off-the-shelf face image analysis
models to create pseudo-labels for unlabelled faces based
on multiple complementary auxiliary signals. These pseudo-
labels were learned by a semi-supervised multi-task model
with noise modelling. In contrast, Park et al. [28] introduced
the concepts of representation learning and meta-learning,
which allowed the model to learn a generalisable latent
feature representation using a small number of samples.
Kothar et al. [18] constructed a weakly supervised learning



Fig. 2. Structure of the gaze target estimator

Fig. 3. Structure of feature fusion operator

model using geometric constraints between gaze directions
when people look at each other in an interactive scene.

However, the task of gaze target estimation places higher
demands on the model’s ability to understand the scene. The
auxiliary signals applied in the methods described above can
hardly help the model understand the scene information in
the absence of labels. Therefore, in our work, we develop
a multi-task learning model to enhance scene understanding
through a visual saliency estimation task. Concurrently, we
design a pseudo-label generation mechanism, which allows
the model to obtain a full comprehension of the scene with
a small number of real labels.

III. METHODOLOGY

Our methodology consists of two main stages. Firstly, in
order to enable our model to obtain information from the
visual saliency estimation task, we build a novel gaze target

estimator with a multi-task learning architecture. This model
uses the same feature decoder to decode different features
from the same image and output both visual saliency map and
gaze target estimation map. Secondly, we propose a pseudo-
label generation method to train this architecture without
real labels. Specifically, we strategically identify areas on the
visual saliency map corresponding to potential gaze locations
based on the head pose of the target person. By training
our multi-task model using pseudo-labels generated in this
way, we can further encourage the gaze target estimation
component of the model to learn relevant information from
the visual saliency estimation task.

A. Gaze Target Estimator

Fig. 2 shows the whole structure of our model and its
inputs and outputs. This model takes four inputs: the RGB
image, the depth image obtained by [36], a crop of the
target person’s face, and the location of the face which is
a binarized image of the size same as the RGB image, with
1 indicating the face position and 0 indicating the rest of the
area. Based on these inputs, the model estimates the visual
saliency of all objects in the scene and the likelihood of
being gazed at by the target person. As shown in Fig. 2, the
model consists of two fully convolutional feature extractors, a
feature fusion operator and a decoder. The feature extractors
extract features from the scene and the target person’s face
separately. In [4], it has been shown that humans natu-
rally follow where others are looking by observing their
head posture. In analogy with this, we design two feature
extractors dedicated to the scene and the target person’s
face individually. The feature fusion operator combines the
features from the scene and face branches, enabling the
model to reason about the scene information according to the
face information. The structure of the feature fusion operator
is given in Fig. 3. It takes the face feature, scene feature, and
head location map as input. These inputs are passed through



Fig. 4. Pseudo-label generation. There are three steps to build the pseudo-label: 1) instance segmentation and head pose estimation; 2) angular similarity
calculation; and 3) attention mask generation. We segment the objects in the scene using Mask-RCNN to obtain the pixel coordinates of each object and
estimate the head pose of the target person by an on-the-shelf head pose estimator [32]. Then, we calculate the likelihood (defined as Cosine Similarity)
of each object being looked at by the target person based on the target’s head orientation. The attention mask is constructed by combining the calculated
likelihoods with the instance-level segmentation masks. Finally, the attention mask and the visual saliency image are overlaid to obtain the pseudo-label.

one fully connected layer and two convolutional layers to
produce a feature of the same size as the input scene feature.
As for the decoder, it is a standard Feature Pyramid Network
(FPN) [23], which is widely used in object detection tasks,
and was first applied by [22] in the field of gaze target
estimation. It up-samples the input features, synthesises the
intermediate layer features from the scene feature extractor,
and finally outputs the heatmap through a sigmoid activation
function.

Training Process. As shown in Fig. 2, we begin with
extracting scene features and face features using the scene
and face feature extractors, respectively. Then, these features
are sent to the feature fusion operator, which outputs a fused
feature. Following this fusion step, both the fused feature and
the original scene feature are fed into the feature decoder
to generate the gaze heatmap and the visual saliency map
simultaneously. To be more specific, the feature decoder
adapts its decoding process based on the type of input
features it receives. When provided with the scene feature as
input, the feature decoder generates a visual saliency map,
supervised by the output of a pre-trained method SalGAN
[27]. In contrast, when given the fused feature as input,
the decoder transforms it into a gaze heatmap, supervised
by pseudo-labels as explained in the following section first.
After pre-training with the pseudo-labels, a small amount
of real labels is used to fine-tune the model. Importantly,
this fine-tuning process occurs while the model continues to
perform the visual saliency estimation task.

B. Pseudo Label Generation

In the lack of real labels, to train the gaze estimator pro-
posed in Section III-A, we develop a pseudo-label generation
method. Fig. 4 shows the three steps of building pseudo-
labels.

In the first step, given an image with a target person whose
gaze is to be estimated, our objective is to determine the
number of objects within the scene, which could potentially
attract the target person’s attention. To do so, we identify
and segment all objects and people in the scene using Mask-
RCNN [13], generating N instance-level segmentation masks
and bounding boxes for these instances, including the target
person. Therefore, there are N − 1 objects that might be
gazed at by the target person. We can also calculate the
position of each object from the output bounding boxes.
The bounding box of an object i can be represented as
(xi

ul ,y
i
ul ,x

i
lr,y

i
lr), i ∈ N − 1. The instance-level segmentation

mask of an object is Mi. Then, we estimate the head pose
of the target person using the method proposed in [32] and
obtain a two-dimensional vector Fhp in pixel coordinates.

For the second step, we define a method to calculate the
probability that each object in the scene is being gazed at by
the target person. Determining whether an object attracts the
target person’s attention typically depends on the alignment
with their gaze direction. The smaller the angle between the
spatial position vector from the target person’s head location
to the estimated object and the vector of the target’s gaze
direction, the greater the probability that the object is being
gazed at. Thus, we define the gazing probability P based
on the cosine similarity between the two vectors. A smaller
value of P means that the angle between the two vectors is
larger. The direction vector from the object in the scene to
the target person can be expressed as F i

r = ci
o −cp, where co

and cp are the object and the target person’s location in pixel
coordinates. The location of the object co can be calculated
as ci

o = [
xi

ul+xi
lr

2 ,
yi
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2 ], i ∈ N −1. The location of the target
person cp is represented by the target person’s head location.
Then we can use the normalised person-to-object vector F i

r
and the target’s head pose vector Fhp to calculate the gazing



probability Pi for each object as follows:

Pi =
1+ Fhp·F i

r
∥Fhp||×||F i

r ||

2
, i ∈ N −1 (1)

After obtaining the gazing probabilities, we can generate
an attention mask Am from the instance-level segmentation
masks Mi, i ∈ N − 1 for each object that the target person
is likely to gaze, as shown in Fig. 4 (refer to Step 2). In
other words, the attention mask can be interpreted as the
composition of individual instance-level segmentation masks,
weighted by the gazing probabilities, and it can be calculated
as follows:

Am =


1

N−1 ∑
N−1
i=1

(
Mi ·ReLU(Pi − 1

N−1 ∑
N−1
j=1 Pj)

)
, if N > 2

1
N−1 ∑

N−1
i=1 (Mi ·Pi), if N = 2

1−M1, if N = 1
(2)

As shown in the equation above, we set three cases. When
N = 1, only the target person appears in the image. In this
case, any region within the image, except for the target
person’s location, may serve as the gaze target. In the case
where N = 2, the image contains only one additional object
and the target person. In this case, this additional object may
become the gaze target. For the case N > 2, we calculate
the average gazing probabilities across all objects in the
image. Only objects with gazing probabilities surpassing the
calculated mean value are selected as potential gaze targets.

Finally, in step three, we know that the probability of an
object being gazed at is also likely to be related to whether
the object is salient in the scene. Due to the uncertainty
in the estimation of the head pose, the head orientation
can not fully represent the gaze direction. So some objects
may be more attractive and more likely to be gazed at
by the target person even though they are farther away
from the gaze direction because they are very salient in the
scene. Therefore, in generating pseudo-labels, we overlaid
the attention mask on the visual saliency map obtained from
SalGAN [27], as shown in Fig. 4 (refer to step 3). The
resulting pseudo-label lp can be represented as lp =Vs ·Am,
where Vs is the visual saliency map. In addition, this pseudo-
label generation method is suitable for our multi-task model.
These pseudo-labels, intercepted and weighted from the
visual saliency maps, can help our model gain the ability
to extract information from the visual saliency task better in
the absence of real labels.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

In this section, we describe the implementation details
of the proposed model. The inputs to the model are the
RGB image, the depth image, the face image of the target
person who needs to be estimated and a binary image
representing the target person’s head location. These four
images are all resized to 224×224. This model consists of
a scene feature extractor, a face feature extractor, a feature
fusion operator and a decoder. Resnet34 [14] is used as

the backbone network for extracting the scene feature and
the face feature. Specifically, for the scene, the input layer
of Resnet34 is extended to 4 channels to accommodate the
input of RGB images and depth images. For the face image,
the convolution layer of Resnet34 is retained completely.
Therefore, the output feature size of both convolutional paths
is 7× 7× 512. In the feature fusion operator, we perform
three times Maximum pooling for the head location map
and compress it into a vector of size 1 × 784. Then, we
input the face features into the Average pooling layer to
make a 1 × 512 vector and concatenate it with the head
location vector, resulting in a vector of size 1× 1296. This
vector will be sent into a fully connected layer to get a self-
attention weight which will weigh the scene feature. After
that, we concatenate the weighted scene feature and the face
feature. Finally, the concatenated feature will be fed into two
convolutional layers with kernel size of 1× 1 to compress
the feature’s size from 7×7×1024 to 7×7×512. The loss
function we used in our training is the Mean Squared Error
(MSE) loss.

B. Dataset

In this paper, we test our model on two of the most
common publicly available datasets, GazeFollow [30] and
VideoAttention [5].

The GazeFollow dataset consists of several publicly avail-
able image datasets, including ImageNet [6], MS COCO
[24], and others. The Gazefollow dataset contains 122,143
images and 130,339 target characters, of which 4782 target
characters were split as the test set and the rest were used as
the training set. To ensure annotation quality, each sample in
the test set contained 10 annotations from different people.
Recently, [36] extended it with depth information for all
samples.

The VideoAttention dataset was created by selecting 50
films from a large number of easily accessible film and
television drama sources and extracting some of the clips.
The duration of these clips varies from 1 to 80 seconds and
contains a total of 164,541 frames. Each frame is annotated
in detail with bounding boxes and gaze target points. 31,978
frames of short clips from 10 films and TV dramas were
selected as the test set.

C. Evaluation Metrics

In order to ensure a fair comparison, we use three eval-
uation metrics by following [30]. AUC: We use the area
under curve (AUC) criteria to assess the confidence level of
the predicted heat map. Dist.: We calculate the Euclidean
distance between the predicted gaze point and the real label.
Ang.: We calculate the angular error between the predicted
gaze direction and the ground truth gaze vector.

D. Experimental Setup

We use the PyTorch framework for implementing the
proposed method. All the training sessions are run on an
RTX3090 Graphic card. The hyper-parameters we set are
as follows: batch size(20), learning rate(0.0001). Adaptive



TABLE I
QUANTITATIVE RESULTS OF COMPARISON WITH THE BASELINE MODELS

Dataset GazeFollow Videoattention

Method
10% 15% 25% 50% 10% 15% 25% 50%

AUC Dist. Ang. AUC Dist. Ang. AUC Dist. Ang. AUC Dist. Ang. AUC Dist. AUC Dist. AUC Dist. AUC Dist.

MT-Video 0.810 0.257 38.1 0.822 0.254 37.3 0.852 0.238 34.3 0.885 0.187 28.3 0.750 0.233 0.759 0.218 0.763 0.216 0.800 0.194

MT-Lian 0.834 0.242 32.6 0.871 0.211 28.9 0.877 0.210 29.8 0.890 0.176 25.4 0.808 0.231 0.815 0.216 0.825 0.222 0.840 0.207

MT-Ours 0.845 0.237 34.8 0.870 0.210 30.5 0.883 0.196 29.0 0.891 0.183 26.2 0.765 0.218 0.785 0.222 0.792 0.220 0.806 0.211

Ours w/o depth 0.867 0.228 32.5 0.879 0.200 29.7 0.887 0.192 28.7 0.896 0.179 25.6 0.813 0.228 0.820 0.226 0.831 0.219 0.842 0.194

Ours 0.871 0.217 30.1 0.883 0.200 29.2 0.890 0.189 28.6 0.898 0.176 25.1 0.818 0.220 0.825 0.229 0.834 0.217 0.846 0.191

moment estimation (Adam) optimizer is used to train our
network.

We train our gaze estimator model in a semi-supervised
manner with a small amount of labelled images. For the
GazeFollow dataset, we randomly select 10%, 15%, 25%,
and 50% of the labelled training samples, while the rest of
the data is used as unlabelled data. For the VideoAttention
dataset, we divide labelled and unlabelled data using a
different approach. There are multiple clips from 40 different
movies in the training set of the Videoattention dataset, and
we randomly select all the clips from 4, 6, 10, and 20 of these
movies as labelled data, which respectively corresponds to
10%, 15%, 25%, and 50% of the labelled training samples.
We train our model directly on the VideoAttention dataset
without pre-train on the GazeFollow dataset.

It should be noted that, as shown in Fig 2, our method
needs the location of the head. To train our method we
use the ground truth values for the head location and add
perturbations to ensure robustness against potential head
localization errors.

Since this is the first time that a semi-supervised learning
approach has been used in the field of gaze target estimation,
we build three baseline models for comparison to validate
our model. We use the Mean-Teacher method [35], which
is commonly used in the field of semi-supervised learning,
to make some modifications to the current state-of-the-art
models in gaze target estimation and train them in a semi-
supervised way. The Mean-Teacher model learns to make
predictions that are consistent with its past checkpoints
(teacher model). This helps the model to generalise better and
prevents the model from making unstable predictions in the
face of unlabelled data. At the same time, compared to other
semi-supervised frameworks, the Mean-Teacher method does
not need to change the output form of the original model and
does not need to introduce more hyper-parameters. Given a
method that we wish to apply the Mean-Teacher framework,
we only need to build another model identical to the original
model, namely the teacher model. Then, the original model,
or the student model, can be trained by the original loss
function and optimizer. As for the teacher model, its param-
eters are updated by the exponential moving average (EMA)
of the student model. In addition, the MSE loss needs to
be added to the original loss function to ensure consistency

between the student model and teacher model outputs. Since
most of the advanced gaze target estimation methods’ source
code is not available, we select two of them and produce the
following baselines. MT-Video: We use the Mean-Teacher
method to retrain the model in [5]. In training, the original
model hyper-parameters and model initialisation methods are
retained. However, the MSE loss was added to the original
loss function to ensure the consistency of the heatmap output
between the teacher model and the student model. MT-
Lian: We use the Mean-Teacher method to retrain the model
in [22]. In training, the original model structure and loss
function were not changed, only the MES loss function was
added to maintain the consistency of the heatmap and gaze
direction between the outputs of the teacher model and the
student model. Besides this, the hyper-parameters are set
as follows: batch size(20) and learning rate(0.00025). MT-
Ours: In order to make a full range of comparisons, we
make changes based on the Mean-Teacher approach using the
structure of our proposed model. The original model hyper-
parameters and model initialisation methods are retained. An
MSE loss was added to our initial loss function to ensure
consistency between the visual saliency heatmaps and the
gaze target heatmaps output by the teacher model and the
student model. However, in training this baseline model, we
do not pre-train it using our proposed pseudo-label. Ours w/o
depth: Since neither Lian [22] nor Video [5] introduces depth
information, we trained our model without depth information
as input for fair comparison.

E. Comparison with Baselines
Table I demonstrates the quantitative results as the com-

parison with the baseline models. The evaluation results on
GazeFollow are shown on the left side of the table. We can
see that our model can always achieve the best performance
on the AUC metrics and Dist. metrics on the GazeFollow
dataset. When trained with 10% real labels, our method
improves the gaze estimation by a margin of 4.4% and 10.3%
in terms of the AUC metric and the Dist metric as compared
to the best performing of the MT-Video and MT-Lian. Our
method also improves by a margin of 3.1% and 8.4% in
terms of AUC metric and Dist. metric as compared to MT-
Ours. Although the improvement in the performance of our
model is reduced as compared with the three baseline models
when trained with 15% and 25% real labels, it still improves



TABLE II
EVALUATION OF OUR MODEL AND OTHER FULLY SUPERVISED MODELS

Method GazeFollow Videoattention Params.AUC Dist. Ang. AUC Dist.
SVM + one grid [30] 0.758 0.276 43.0 - - -
SVM + shift grid [30] 0.788 0.268 40.0 - - -
Recasens [30] 0.878 0.190 24.0 - - -
Chong [4] 0.896 0.187 - 0.830 0.193 -
Lian [22] 0.906 0.145 17.6 0.867 0.168 52M
Video [5] 0.921 0.137 - 0.854 0.147 61M
Fang [9] 0.922 0.124 14.9 0.878 0.124 66M
Tonini [36] 0.927 0.141 - 0.940 0.129 92M
Bao [1] 0.928 0.126 15.3 0.885 0.120 63M
Miao [25] 0.934 0.123 - 0.912 0.109 61M
Ours - fully supervised 0.914 0.157 21.7 0.898 0.140 44M
Ours-resnet50 – fully supervised 0.908 0.160 22.9 0.897 0.141 60M

the AUC metric by 1.3% and 1.4%. The evaluation result on
VideoAttention is shown on the right side of the table. Our
model always achieves the best performance in terms of the
AUC metric and improves by a margin of 1.2%, 1.2%, 1.1%
and 0.7% as compared with the baselines, when trained with
10%, 15%, 25% and 50% of real labels. From the result
shown in Table I, we can see that our method can achieve
the best results 16 times out of 20 as compared with other
baselines. Although our results are not the best on the Dist
metrics compared to the other baseline on the VideoAttention
dataset when we use 10% to 25% true labels, our results
are pretty close to the best. And the Dist. metrics may
be meaningless to some extent [1]. Additionally, because
MT-Video and MT-Lian do not take depth information as
input, to make a fair comparison, we evaluate our model
without depth information. From the result, we can see
that even without depth information, our model can achieve
good performance. Thus, the newly added visual saliency
information can already bring semantic understanding to our
model without depth information.

F. Comparison with Fully Supervised Methods

While our primary focus in this paper is on address-
ing gaze estimation under weakly-supervised conditions, we
conducted fully-supervised training for our proposed model
to show its performance comprehensively. We present the
results of comparison with current state-of-the-art fully su-
pervised methods in Table II. It should be noted that on the
VideoAttention dataset, we follow the training settings of
the other models to ensure a fair comparison. We trained
our model on the GazeFollow dataset until convergence, and
then we fine-tuned our model on the VideoAttention dataset.

The quantitative results in Table II show that although we
can not surpass some SOTA methods, our method remains
competitively positioned in comparison with other methods
proposed so far. Especially, when considered alongside with
Table I, our model under weakly supervised conditions
surpasses some fully supervised methods like Recasens [30]
and Chong [4] with respect to all three metrics.

Compared with Video[5], Fang [9], Tonini [36], Bao [1]
and Miao [25] which outperform our method under the fully
supervised condition, our model has the least number of
parameters. In contrast to our methods, most of the methods
proposed so far use Resnet50 rather than Resnet34 as the

TABLE III
THE RESULTS OF ABLATION STUDIES

Method AUC Dist Ang
w/o.visual saliency prediction branch 0.840 0.245 33.5
w/o.pseduo-label training 0.856 0.228 31.8
Ours (10%) 0.871 0.217 30.1

backbone. Because of that, they also use a large number of
parameters in constructing the attention mechanism to build
the relationship between the scene image and the face image.
Consequently, benefiting from the backbone with stronger
generalisation capabilities and a more sophisticated attention
mechanism, these methods can achieve performance that is
better than our model on fully supervised training. How-
ever, it is difficult for such models with a large number
of parameters to achieve good performance under semi-
supervised training settings (i.e., using a small number of
annotated samples only). As shown in Table I, the model
with more parameters such as Video [5] is performing worse
as compared to Lian [22] and our model when we use the
same Mean-Teacher based structure and the same number of
labelled samples for training.

We further investigated the performance of our approach
using Resnet50 as the backbone, but it can be seen from
Table II that there is a slight deterioration in the performance.
We conjecture that this might be due to the overfitting
problem in visual saliency estimation and thus our model
struggles to transfer the knowledge from visual saliency
estimation to gaze target estimation. our model cannot ef-
fectively fine-tune the pre-trained model with limited labels
when a deeper model is used.

Besides the number of parameters, some of the models
such as Lian [22], Fang [9] and Bao [1] additionally incor-
porate supervision from manually annotated gaze direction
features, further improving the performance in terms of the
Dist. and Ang. metrics. Although our model’s performance
with respect to the AUC metric is better than Lian [22], due
to the lack of gaze direction information, our model performs
slightly worse than Lian [22] with respect to the Dist. and
Ang. metrics on the GazeFollow dataset, when we perform
fully supervised training. However, estimating gaze direction
is a problem per se, and solving it with a limited number of
annotated samples is not trivial. In contrast, our approach
relies more on scene reasoning, enabling competitive perfor-
mance on the VideoAttention dataset after pre-training on
the GazeFollow dataset.

G. Ablation Studies

In this section, we analyse the impact of each component
on the model. In order to make a fair comparison, we design
the following baselines and use 10% of the real labels for
training.

• Without visual saliency prediction branch: We re-
move the branch of the visual saliency map prediction
and let the network predict the gaze target directly.



Fig. 5. Visualizations of the output of baseline models and our model (all trained by 10% of labels). The first two rows are on GazeFollow [30] and the
last two rows are on VideoAttention [5]. In the first column, the red circle indicates the target person. The ground truth gaze target points are shown in
the second column.

Specifically, the feature decoder does not take the scene
feature as input directly to do the visual saliency esti-
mation in this baseline. The model is trained by 10%
of real labels directly without any pre-training steps.

• Without pseudo-label training: In this baseline, all the
model components are retained. We only remove the
step of pre-training the network using pseudo-labels. We
train this model under the supervision of the pre-trained
visual saliency estimator and 10% of the real labels.

Table III shows the results of the ablation studies. From the
results, we can see that adding the branch of visual saliency
estimation can effectively improve the results of gaze target
estimation with limited labels. Pre-training the model using
pseudo-labels can enhance the model’s ability to understand
semantic information better.

H. Visualization of prediction results

We visualize the outputs from the baseline model we pro-
duced and our model in Fig. 5. In line with the quantitative
results, our model is more accurate as compared with these
baseline models under limited supervision.

V. CONCLUSION

We propose a novel gaze target estimation model that
can be trained using a small number of labels. To achieve
this, we first construct a two-branch structure that allows
the model to perform both the visual saliency estimation

task and gaze target estimation task. This structure forces
the model to utilise visual saliency information to do se-
mantic understanding in the absence of label information.
Subsequently, we construct pseudo-labels using the target’s
head pose and objects’ location combined with the visual
saliency map and pre-trained the model using the pseudo-
labels to enhance the model’s ability to utilise visual saliency
features. From the results, our model shows an advantage
in comparison with the baselines we constructed based on
commonly used semi-supervised learning frameworks. At
the same time, our model’s performance can approach or
even exceed the performance of some fully supervised deep-
learning models.
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