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Abstract— Gloss-free Sign Language Production (SLP) offers
a direct translation of spoken language sentences into sign
language, bypassing the need for gloss intermediaries. Previous
autoregressive SLP methods have not fully achieved true
autoregression, as they often depend on ground-truth data
during inference. To fill this gap, we introduce Sign language
Vector Quantization Network (SignVQNet), leveraging discrete
spatio-temporal representations of sign poses. With such a
discrete representation, our method incorporates beam search, a
decoding strategy widely used in Natural Language Processing.
Furthermore, we align the discrete representation with linguis-
tic features from pre-trained language models such as BERT.
Our results show the superior performance of our method
over prior SLP methods in generating accurate and realistic
sign pose sequences. Additionally, our analysis shows that the
reliability of Back-Translation and Fréchet Gesture Distance
as evaluation metrics, in contrast to DTW-MJE. The code
and models are available at https://github.com/eddie-euijun-
hwang/SignVQNet.

I. INTRODUCTION

Gloss-free Sign Language Production (SLP) directly trans-
lates spoken language into sign poses, eliminating the need
for gloss annotation. Glosses, while providing a direct
mapping between spoken language and sign poses, require
significant labor, time, and specialized knowledge of sign
language. This high demand for the resources has been a
driving factor in the growing interest and transition towards
gloss-free methods [17], [18], [27], [31]. While the gloss-free
methods typically exhibit lower performance than the gloss-
based ones, they offer greater accessibility and efficiency.

In the domain of gloss-free SLP, two approaches prevail:
retrieval and generative models. Retrieval models [6], [9],
[26] fetch relevant samples from datasets based on textual
prompts. Generative models [13], [24], [25], on the other
hand, can generate entirely new signing sequences by lever-
aging patterns learned during training. This capability to
produce diverse outputs makes generative models a com-
pelling choice for SLP, which is the focus of our research.
However, the generative models face a few challenges. The
length disparity between sign pose sequences and their spo-
ken equivalents often necessitates clustering sequences into
gloss-level representations [18]. Moreover, the non-linear
nature of sign language compared to the linear structure of
spoken language adds complexity to this task.

Recent studies [12], [13] have pointed out the constraints
of the model introduced earlier [24]. A significant concern is
about its dependence on the initial ground-truth pose and tim-
ing for inference, pivotal for the model’s autoregression. The
continuous nature of the sign pose sequences, represented
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Fig. 1: An overview of SignVQNet, where both the pre-
trained STGP encdoer and decoder remain frozen. The
encoder converts the sign pose sequence into discrete tokens.
These tokens are then generated from textual inputs by
Transformer. The decoder transforms the generated tokens
back into an actual sign pose sequence.

as keypoint data, complicates achieving true autoregression
without auxiliary information during inference.

To address this, we introduce Sign language Vector
Quantization Network (SignVQNet), as shown in Fig. 1.
Leveraging vector quantization, our method converts the
sign pose sequences into discrete tokens, enabling genuine
autoregressive generation. This approach also supports beam
search, commonly used for Natural Language Processing
(NLP) tasks [7], [15], [16]. Additionally, we introduce latent-
level alignment to directly associate linguistic features with
sign pose features.

We compared the performance of SignVQNet against
those of other existing SLP models using Back-Translation
(BT) [24], DTW-MJE [12], and Fréchet Gesture Distance
(FGD) [32]. Our experimental results showed that Sign-
VQNet consistently outperformed the previous methods on
two sign language datasets: RWTH-PHOENIX-WEATHER-
2014T [3] and How2Sign [10]. In our additional experi-
ments focusing on beam size adjustment of our method, we
found that DTW-MJE suffers from inconsistencies, raising
questions about its reliability as a suitable metric for SLP.
By contrast, both BT and FGD have demonstrated better
consistency and reliability as more effective metrics for
assessing SLP.

II. RELATED WORKS
A. Generative Gloss-free Sign Language Production

Saunders et al. [24] pioneered the application of Progres-
sive Transformers (PT) to gloss-free SLP. Their approach
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combined a counter decoding method and augmentation
strategies such as Gaussian Noise and Future Prediction.
Additionally, they introduced BT to assess the model per-
formance. Building on this, Saunders et al. [23] addressed
the regression-to-the-mean issue by adopting an adversarial
training framework. In their subsequent work, they optimized
PT by employing a mixture of motion primitives [25].
Meanwhile, Hwang et al. [13] introduced a paradigm shift
with their Non-Autoregressive Sign Language Production
with a Gaussian space (NSLP-G) model. Designed to convert
spoken language sentences into corresponding sign pose
sequences, NSLP-G diverged from conventional methods by
adopting non-autoregressive decoding with the pre-trained
VAE on the spatial aspect of the sign pose sequences. In our
work, we extend this exploration into the spatial-temporal
aspect of sign pose sequences, aiming to achieve a gloss-
level representation.

B. Discrete Representation

There are several studies that convert continuous data into
discrete data. Maddison et al. [20] and Jang et al. [14] pro-
pose Concrete Distribution and Gumbel Softmax Relaxation,
respectively, which are techniques for approximating the
sampling process of discrete data from a continuous distribu-
tion using annealing during training. Van et al. [29] propose
VQ-VAE, which extends the standard autoencoder by adding
a discrete codebook component to the network. VQ-VAE
compares the vector in the codebook with the output of the
encoder, where the closest vector is fed to the decoder. The
model is trained using an online cluster assignment procedure
coupled with a straight-through estimator. Gumbel Softmax
Relaxation allows the model to effectively learn a discrete
latent distribution [21]. In our work, we utilize this method
to discretize the sign pose sequences.

III. METHOD

A. Problem Formulation

Consider a spoken language sentence x = {xu}U
u=1, which

consists of U words. The objective of SLP is to produce a
sign pose sequence y= {yt}T

t=1 ∈RV×C, where V denotes the
number of vertices, and C the feature dimension of the skele-
tal pose data. Instead of directly modeling p(y|x), we em-
ploy an intermediary representation z, consisting of discrete
tokens. These tokens encapsulate both spatial and temporal
attributes of sign language. The generation process is then
defined by the joint distribution p(y,z|x) = q(y|z,x)p(z|x).
Here, p(z|x) denotes the probability of generating the discrete
representation z from the input x, while q(y|z,x) represents
the probability of generating the continuous sign pose se-
quence y based on z and x. The first term is handled by a
vector quantization model, and the second is modeled in an
autoregressive manner.

B. Learning Discrete Representation of Sign Poses

To convert a sign pose sequence into discrete tokens,
we introduce Spatio-Temporal Graph Pyramid (STGP)-based
dVAE [21], as shown in Fig. 1. Inspired by the Graph
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Fig. 2: An overview of the STGP block. Spatial Convolution
(SC) and Temporal Convolution (TC) process the input
spatially and temporally, respectively, and the subsampled
output preserves spatio-temporal features through a residual
connection. BN refers to Batch Normalization.

Pyramid [30], we propose an STGP block–a fundamental
building block for the encoder and decoder–to address the
intricacies of down-sampling and up-sampling within a skele-
ton graph, which features non-uniform grids. A detailed
overview of the STGP block is provided in Fig. 2. The
STGP block sequentially processes input sequences, handling
both their spatial and temporal aspects. Each processing ends
with a residual connection to preserve down-sampled spatio-
temporal information.

Our model is designed to handle fixed-length sign seg-
ments represented as y(ℓ) ∈ RL×V×C, where L represents the
window size. A sign segment refers to a small fraction of
the full sign pose sequence. Central to the STGP-dVAE is a
codebook comprising latent variable categories, represented
as ei ∈RK×Dc . Here, K denotes the number of latent variable
categories, while Dc refers to the embedding size. Then we
discretize the output of the STGP encoder using Gumbel-
Softmax relaxation [14]. This process samples a latent from
the output of the encoder ei as:

wi =
exp(log(ei)+gi)/τ

∑
K
k=1 exp(log(ek)+gk)/τ

, (1)

where gi represents the independent ith sample from the
Gumbel distribution. The parameter τ adjusts the approx-
imation to the categorical distribution, and wi denotes the
weights over the codebook vectors. These discretized repre-
sentations are used for “sign tokens” in subsequent training
shown in Sec. III-C. The resulting sampled latent vector is
then given by z(ℓ) = ∑

K
k=1 wkek.

The model is optimized by minimizing the combined loss
function that consists of reconstruction and diversity losses
[2]. We use L2 loss as the reconstruction loss, defined as:

Lpose =
1
L

L

∑
i=1

∥∥∥y(ℓ)i − ŷ(ℓ)i

∥∥∥2

2
, (2)

where y(ℓ) and ŷ(ℓ) represent the ground-truth and the recon-
structed sign segment, respectively. The diversity loss, which
enables the model to use the codebook effectively [2], is
represented as:

Ldiv =−
K

∑
i=1

p(ei) log(p(ei)). (3)

The final loss can be defined as:

L = Lpose +αLdiv, (4)

where α is the hyperparameter that determines the scale of
diversity loss.



TABLE I: Statistics of Sign Language Datasets. NoF refers
to the number of frames.

Train / Valid / Test Max NoF Min NoF Avg NoF FPS
PHOENIX14T [3] 7,096 / 519 / 642 475 16 116 25

How2Sign [10] 31,128 / 1,741 / 2,322 2,579 32 173 30

C. Autoregressive Sign Language Production

To generate the sign tokens from the given spoken lan-
guage sentence, we use the Transformer encoder-decoder
architecture, as depicted in Fig. 1. The first step involves
converting the sign pose sequence into the sign tokens. This
process entails dividing the input sign pose sequence, y, into
multiple sign segments, each with a length L. Consequently,
the number of sign tokens can be M =

⌊T
L

⌋
, resulting in

y ≈ {y(ℓ)i }M
i=1 ∈ RM×V×C. For computational efficiency, any

remaining sign poses are simply removed. Each segment
is subsequently encoded by the pre-trained STGP encoder
through the argmax operation, yielding a sign token denoted
as zi = argmax(hi), where hi is the ith hidden representation
from the STGP encoder. To mark the start and end of signs,
z is padded with ⟨bos⟩ and ⟨eos⟩.

The model is optimized by minimizing the combined loss
function, which consists of Cross-Entropy (CE) and latent
alignment losses. The CE loss is represented as:

Lce =−
M

∑
i=1

log(p(zi|z<i,x)), (5)

where p(zi|z<i,x) represents the probability of generating the
ith token zi given the previous tokens z<i and the input x.

The latent loss, employing L2 loss, offers supplementary
latent-level signals by aligning the output of the Transformer
decoder with that of the pre-trained STGP encoder. It can be
defined as:

Llatent =
1
M

M

∑
i=1

∥∥hi − ĥi
∥∥2

2 , (6)

where ĥi is the ith hidden representation from the Trans-
former decoder. The overall loss is the sum of the two
aforementioned losses:

L = Lce +βLlatent , (7)

where β serves as a hyperparameter scaling the latent loss.

IV. EXPERIMENTAL SETTINGS

A. Datasets

We evaluated our method using two different sign
language datasets: RWTH-PHOENIX-WEATHER-2014T
(PHOENIX14T) [3] and How2Sign [10]. Details for each
dataset are presented in Tab. I. PHOENIX14T is a German
Sign Language (DGS) dataset from weather forecasts. This
dataset contains 8,257 pairs of German and corresponding
DGS videos with word-level annotations. How2Sign [10]
is a large-scale American Sign Language (ASL) dataset
that contains 2,500 instructional videos. For PHOENIX14T,
where keypoints are not provided, we used OpenPose [5] and
skeleton correction model [34], following [13], [24].

TABLE II: Comparison with the previous methods. The best
results are in bold, followed by the second-best in underline.

PHOENIX14T How2Sign
FGD↓ DTW-MJE↓ BLEU-4 FGD↓ DTW-MJE↓ BLEU-4

PT [24] 360.62 0.793 0.59 391.06 0.355 0.57
w/o GN&FP 384.23 0.991 0.73 383.20 0.402 0.33
NSLP-G [13] 150.28 0.638 5.56 291.62 0.327 0.41
w/o Finetuning 179.40 0.646 4.41 440.95 0.321 0.54
SignVQNet 92.64 0.671 6.85 82.76 0.319 0.71
w/o Beam search 96.60 0.670 6.39 81.99 0.317 0.63
Ground-truth 0.0 0.0 8.10 0.0 0.0 0.70

Fig. 3: Performance discrepancy among the SLP metrics in
relation to change in beam size. Except for DTW-MJE, all
metrics show consistent improvement as beam size increases.

B. Preprocessing

During preprocessing, to ensure consistency across all
poses, the keypoints were centered and normalized relative to
the shoulder joint [33]. This step guarantees that the length
from one shoulder to the other is consistently scaled to a
value of 1. To further refine the quality of the data, we also
implemented a noise frame removal process. This process
starts by calculating the differences between consecutive
frames in the keypoints, represented as Xdiff ∈ R(T−1)×V×C.
Here, T denotes the number of frames, V the number of
vertices, and C the feature dimension. Subsequently, we
calculated the Euclidean distance for each joint between con-
secutive frames, resulting in a distance matrix D∈R(T−1)×V .
We then computed the average distance per frame D, and
compared this against a predefined threshold θ . Frames
where D exceeds θ are identified as noisy and excluded from
further processing. Following the removal of noisy frames,
we normalized the remaining keypoints to ensure that they
fit within the range of [−1,1]. This final normalization step
is essential for maintaining uniform scaling and positioning
of the keypoints. Texts were converted to lowercase and
tokenized via Byte-Pare Encoding (BPE). The vocabularly
sizes for this encoding were set at 3,000 for PHOENIX14T
dataset and 10,000 for How2Sign dataset.

C. Implementation Details

For our experiments, we utilized the Gumbel-Softmax
relaxation and annealed its temperature, τ , from 0.9 down
to 0.1. The parameters α and β were set at 0.1 and 0.001,
respectively. We used 4 STGP blocks. In configuring the
Transformer model, we set the hidden size to 768, with 4
layers and 8 attention heads, a dropout rate to 0.1, and an
intermediate size to 1,024. We used the AdamW optimizer



(a) PHOENIX14T (b) How2Sign

Fig. 4: We present a visual comparison between our method and the baselines on both (a) PHOENIX-2014-T and (b)
How2Sign. As highlighted in the dashed boxes, our method generates more realistic and accurate sign pose sequences.
Videos are available at http://nlpcl.kaist.ac.kr/ projects/signvqnet

TABLE III: Ablation experiments on PHOENIX14T.
DEV TEST

Window Size FGD↓ DTW-MJE↓ BLEU-4 FGD↓ DTW-MJE↓ BLEU-4
16 42.95 0.310 6.75 41.45 0.301 6.55
32 42.04 0.302 6.77 41.43 0.299 6.88
64 44.68 0.305 6.44 43.21 0.305 6.52

(a) Window Size

DEV TEST
Loss FGD↓ DTW-MJE↓ BLEU-4 FGD↓ DTW-MJE↓ BLEU-4
Lce 102.87 0.679 6.30 96.51 0.674 5.94
Llatent 504.88 0.755 0.36 512.48 0.741 0.40
Lce +Llatent 100.85 0.676 6.76 96.60 0.670 6.39

(b) Loss Type

DEV TEST
Models FGD↓ DTW-MJE↓ BLEU-4 FGD↓ DTW-MJE↓ BLEU-4
GRU 433.76 0.685 0.49 444.74 0.681 0.61

+Attn 383.99 0.697 0.74 402.92 0.700 0.81
Transformer 103.88 0.682 5.33 102.45 0.676 6.22

+BERT [8] 102.87 0.679 6.30 96.51 0.674 5.94

(c) Architecture Type

DEV TEST
Vocab Size FGD↓ DTW-MJE↓ BLEU-4 FGD↓ DTW-MJE↓ BLEU-4

512 42.96 0.315 6.75 41.81 0.312 6.30
1024 42.04 0.302 6.77 41.43 0.299 6.88
2048 44.68 0.306 6.24 44.23 0.306 6.77
4096 56.74 0.325 6.64 55.13 0.323 6.57
8192 55.96 0.317 6.30 55.58 0.315 5.89

(d) Codebook Size

[19] with a learning rate set at 0.0001. To encode the spoken
language setnecne, we used the pre-trained BERT1 (bert-
base-cased and bert-base-german-cased), fine-tuned during
training. We selected a checkpoint that minimizes the score
against FGD metric. The entire training process ran for 500
epochs, taking approximately 24 hours on a Tesla A100
GPU, with a batch size of 64.

D. Evaluation Metrics

We used a range of evaluation metrics to assess our
method. The Back-Translation (BT) [24] was used to com-
pute BLEU-4 by translating the produced sign pose sequence
back into spoken language for comparison with the original
text. As a back-translation model, we trained Joint-SLT [4]
on PHOENIX14T and How2Sign, following [12], [13], [24],
[28]. In addition, we used the DTW-MJE [12], which com-
bines Dynamic Time Warping (DTW) with Mean Joint Error
(MJE) to measure discrepancies between predicted and actual
sign pose sequences. Additionally, we used Fréchet Gesture
Distance (FGD) [32] to evaluate the visual fidelity of the
generated sign pose sequence by comparing the distributions
of real and generated sequences.

V. EXPERIMENTAL RESULTS
A. Quantitative Results

We compared our method with the previous gloss-free SLP
methods: PT [24] and NSLP-G [13]. For PT, we employ its

1https://huggingface.co/models

base and Gaussian and Future Prediction (GN&FP) settings.
PT was modified to exclude the use of additional ground-
truth data, as recommended by [12], [28], to ensure a fair
comparison. For NSLP-G, we used the frozen and fine-tuning
option during training. As shown in Tab. II, our method out-
performs the baselines on both datasets, especially in terms
of FGD and BLEU-4. On How2Sign, which features longer
frame sequences than PHOENIX14T (Tab. I), our method
shows its robustness in generating extended pose sequences.
An interesting observation arises from PHOENIX14T. While
our method outperforms in FGD and BLEU-4, it lags behind
NSLP-G in DTW-MJE. This is mainly due to the unique
evaluating manner in DTW-MJE. We delve deeper into this
observation in the subsequent sections.

B. Analyzing Evaluation Metrics for SLP

In the domain of SLP, selecting reliable metrics is crucial
for the comprehensive evaluation of the performance of
generative models. While the field currently relies on metrics
such as FGD, DTW-MJE, and BT, identifying the optimal
metric for comprehensive evaluation remains an open ques-
tion. This challenge is exemplified by the conflicting results
observed between our method and NSLP-G, as highlighted
in Sec. V-A and by [1]. Specifically, these discrepancies
arise from the differences in loss functions employed by
these models. For instance, our method uses CE loss, which
focuses on sequential prediction accuracy and preserving the
structure of sign language. This emphasis on the sequential

http://nlpcl.kaist.ac.kr/~projects/signvqnet
https://huggingface.co/models


structure may affect the model’s performance in DTW-MJE,
a metric that primarily evaluates the spatial accuracy of
keypoints. By contrast, NSLP-G utilizes MSE loss, focusing
on the spatial accuracy on a frame-by-frame basis, which
typically results in better scores in DTW-MJE.

To further investigate these disparities, we conducted an
additional analysis to see how varying beam sizes affects the
performance of our model on PHOENIX14T. Our findings,
as shown in Fig. 3, indicate that FGD and BLEU-4 generally
improve with larger beam sizes, whereas DTW-MJE tends
to decrease. Additionally, we included DTW in our analysis
for a more comprehensive evaluation. It is worth noting that
DTW-MJE, by enforcing alignment between the generated
and ground-truth sign pose sequences, might not always pro-
vide a true comparison. Specifically, DTW aims to minimize
the distance by aligning sequences, which may not always
reflect the actual temporal alignment. When combined with
MJE, this can lead to inconsistent error measurements. This
shows the need for careful consideration of the development
of new metrics tailored to the specific challenges of SLP
evaluation.

C. Qualitative Results

We offer a visual comparison of the sign pose sequences
generated by our method in contrast to the baselines on
PHOENIX14T and How2Sign. As shown in Fig. 4, our
method generates more accurate signs, such as “Morning”,
“Sunday”, “Me”, and “Work”, compared to the baselines.

D. Ablation Study

We investigated the effects of various components and
design choices of our method on PHOENIX14T, the most
widely used dataset in sign language research. Tab. IIIc
shows that the Transformer encoder-decoder model outper-
forms GRU-based networks, which are commonly used for
human motion tasks [11], [22], [32]. Furthermore, employing
the pre-trained BERT [8] significantly improved its perfor-
mance. Regarding the loss functions, a combination of Lce
and Llatent yields the best performance, as shown in Tab.
IIIb. Optimal performance was achieved with a window size
L set to 32 as shown in Tab. IIIa, and a codebook size of
1,024 showed the best performance as shown in Tab. IIId.

VI. CONCLUSION

In this paper, we introduced SignVQNet, gloss-free Sign
Language Production (SLP) that leverages vector quantiza-
tion to derive discrete tokens from sign pose sequences. This
enables genuine autoregression without the need for ground-
truth data during inference, addressing the shortcomings of
the previous autoregressive SLP model. In our experiments,
we demonstrate its superiority over prior methods, achieving
the state-of-the-art performance on both PHOENIX14T and
How2Sign. Additionally, we highlight the reliability of BT
and FGD as evaluation metrics, while noting inconsistencies
in the DTW-MJE metric.
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