
2024 18th International Conference on Automatic Face and Gesture Recognition (FG)

Semantic-Aware Detail Enhancement for Blind Face Restoration

Huimin Zhao1, Xiaoqiang Zhou2, Jie Cao2, Huaibo Huang2, Aihua Zheng1†, Ran He2,3
1School of Computer Science and Technology, Anhui University, Hefei, China

2NLPR & CRIPAC, Institute of Automation, Chinese Academy of Sciences, China
3School of Artificial Intelligence, University of Chinese Academy of Sciences, China

Abstract— The goal of Blind Face Restoration is to re-
cover high-quality images from low-quality images suffering
from unknown degradations, posing a significantly challenging
problem. In recent years, numerous BFR methods have been
proposed, achieving significant success. However, faces possess
a unique facial topology, and subtle differences in texture,
slight structural imbalances, and minimal asymmetry are easily
perceptible in the restored face images. Previous methods
often struggle to generate realistically high-quality images
from real-world low-quality images and fail to preserve fine
features. To more effectively restore image details and textures,
providing a more natural and realistic restoration effect, we
integrate facial semantic information as prior knowledge into
the blind face restoration task. We employ a multi-head cross-
attention mechanism to simultaneously consider facial semantic
information and context information for modeling. Additionally,
we introduce a local detail enhancement module specifically
designed to enhance the processing capability of details around
the eyes and mouth. Experimental results indicate that our
proposed method recovers facial images on synthetic and real
datasets more realistically and with higher fidelity.

I. INTRODUCTION
Blind face restoration aims to recover high-quality face

images from low-quality corresponding face images suffering
from unknown degradations, including but not limited to
low resolution, blurriness, noise, JPEG compression, or their
combinations. This technology has potential applications in
enhancing facial image quality and is pivotal in various fields.
Early methods primarily relied on a substantial collection of
low-quality (LQ) and high-quality (HQ) image pairs to learn
the mapping from LQ images to HQ images. However, these
image pairs often fail to comprehensively cover all types
of image degradation encountered in real-world images.
Consequently, the restored face images exhibit significant
deviations from the ideal high-quality face images. This
discrepancy is manifested in the generated facial images
appearing unnaturally or not aligning accurately with the
facial features of the original people depicted.

Most deep learning-based methods [16], [7] introduce
various constraints or priors to mitigate the impact of
discrepancies and enhance the quality of restoration. For
instance, GFP-GAN [35] and GPEN [39] utilize pre-trained
Generative Adversarial Networks (GANs) [10] as decoders
to capture facial priors for simultaneous restoration and
color enhancement. However, as depicted in Fig. 1, face
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images generated by these pre-trained GAN models often
lack detailed information about facial skin texture, result-
ing in an overly smooth appearance. Recently, such as
DR2 [38] and DifFace [40], have started to leverage the
rich image priors and robust generative capabilities of pre-
trained diffusion models to strengthen the robustness of
blind image restoration. Denoising Diffusion Probabilistic
Models (DDPM) [14] refine spatial content during the back-
propagation process to enhance the realism of the images.
However, these methods lack certain constraints to guide
the generation process. Despite these advancements, such
methods generally lack effective constraints to guide the
generation process, leading to significant deficiencies in the
fidelity of the generated images and difficulty in reproducing
fine-grained facial details. For instance, as shown in Fig. 1,
details like glasses and hair in the facial images generated,
are prone to loss.

In this work, to generate realistic that aligned with user
preferences while preserving fine-grained identity features,
we incorporate face semantic information as a key prior
knowledge into the task of blind face restoration. The ob-
jective is to transform degraded facial features into another
set of features closely resemble real facial features based on
the semantic priors. This involves using semantic priors to
understand the basic structure of the face, such as the position
and shape of the eyes, nose, and mouth. Subsequently, this
facial semantic information is utilized as the foundational
framework for constructing facial details, guiding the restora-
tion process of facial details such as wrinkles, freckles, and
skin textures. This approach not only enhances the details
but also renders the face more natural and lifelike. Existing
methods based on Vision Transformer (ViT) [23], [30],
[17] typically employ multi-head self-attention mechanisms,
which evenly focus on the entire input space but may fail to
capture the subtle differences between different regions of the
input space. This limitation becomes particularly evident in
the restoration of facial textures and the reduction of artifacts.
To effectively leverage semantic information, we designed
a semantic-aware fusion module using a multi-head cross-
attention mechanism. In this mechanism, degraded facial
features are used as queries, and facial semantic features as
key-value pairs. This allows for the capture of correlations
between different regions, and enables fusion in both global
and local spaces for more precise and targeted attention.
This approach enhances the realism and fidelity of key facial
region restoration.

In addition, we introduced a local detail enhancement
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Fig. 1. Comparison of the restoration quality between our method and others on real-world datasets. We proposed a method that can restore high-quality
facial details on various facial regions and keep the fidelity, while other methods lack realistic fine details. Please zoom in for a better view.

module, specifically designed for processing features at vary-
ing scales. This module particularly focuses on enhancing the
detailed features of key areas such as the eyes and mouth. To
elaborate, we segment the semantic information of the eye
and mouth regions and embed it into the decoder. This inte-
gration allows for an effective fusion with the degraded facial
features at different scales, thereby guiding the semantic
repair of local details. Such a process ensures that the results
of the repair are semantically consistent with the overall
facial context, thereby avoiding unnatural imperfections. Our
approach is capable of adapting to features at different scales,
making it suitable for both local and global face restoration
tasks, enabling the precise capture and restoration of subtle
features, ultimately achieving naturalness and realism in
facial restoration results. We evaluated the proposed method
on real-world and synthetic datasets, and the experimental
results demonstrate significant improvements in handling the
micro-details and textures of facial skin.

II. RELATED WORK

A. Blind Face Restoration

Blind face restoration aims to recover high-quality faces
from images that have undergone unknown and complex
degradation. Early attempts utilized DNN-based [43], [16],
[22] methods to directly restore high-quality faces from
degraded ones. The Dual-Channel Convolutional Neural Net-
work (BCCNN) proposed by Zhou et al. [43] directly maps
LQ images to HQ images, utilizing a decoder to reconstruct
the HQ face. Cascade Block Network (CBN) [45] adopts a
cascaded framework to jointly optimize the performance lim-
itations of previous methods when dealing with misaligned
facial images. However, due to the limited information on

degraded faces, researchers have begun seeking assistance
from other priors.

Deep generative models [10], [14] are popular for their
excellent performance in dealing with linear inverse prob-
lems such as super-resolution [32], [36], deblurring [21],
[29], restoration [37], and colorization [24]. Instead of di-
rectly upsampling or reconstructing the input images, some
approaches utilize the rich priors encapsulated in generative
models, by embedding the pre-trained StyleGAN [1] decoder
directly into the BFR network. PULSE [27] employs the
latent feature space of pre-trained StyleGAN, identifying
the latent vectors most relevant to the low-quality input
face images in the feature domain of the pre-trained GAN
for self-supervised face restoration. However, searching for
the best match image in the latent space of the generative
model does not ensure that the restored face will be con-
sistent with the original face content. Then, GPEN [39],
GFP-GAN [35], and GLEAN [3] utilize pre-trained GANs
to capture facial priors, significantly enhancing restoration
performance. These methods leverage the generative priors
of GANs to guide the forward process of the network,
effectively utilizing the input facial features to enhance the
fidelity of the restoration. VQFR [11] also employs pre-
trained VQGAN [8] to enhance facial details, significantly
reducing uncertainty and blurriness. The main advantage of
VQGAN lies in its vector quantization mechanism, allowing
precise manipulation of specific features in the generated face
images.

Recent works propose utilize the powerful generative
priors in diffusion models [14] to address the issue of
blind face restoration. DR2 [38] employs a diffusion model
to transform degraded images into rough but degradation-
invariant predictions, which are then restored to high-quality
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Fig. 2. Overall framework of the proposed method. The whole pipeline of our method primarily consists of three components: the encoder E, the
decoder D, and the semantic-aware fusion module(SaFM). Given a low-quality image Il, the process begins with the encoder E extracting facial features
fen . Subsequently, in the semantic-aware fusion module, these degraded facial features fen , high-quality facial details Zq, and facial semantic information
Zseg are integrated through feature fusion. Meanwhile, a local detail enhancement module (LDE) is introduced in the decoder, specifically targeting the
enhancement of detail features in key areas such as the eyes and mouth. Finally, the decoder outputs a high-quality image Irec.

images using an enhancement module. Although this ap-
proach improves image quality, it falls short in maintaining
the authenticity of the images. Subsequently, to balance
the inherent realism priors in diffusion models with the
fidelity requirements of image restoration tasks, DiffBIR [25]
incorporates an additional degradation preprocessing module
and a ControlNet-like conditional control module. SR3 [31]
and DifFace [40] input low-quality images into a diffusion
model to serve as a guiding condition for restoration during
training. However, using only degradation information as a
constraint still fails to enhance the realism and fidelity of
the images. Therefore, this paper proposes the use of facial
semantic information as an additional prior to enhance the
fidelity of blind face restoration, thereby improving the detail
of key facial components.

B. Vision Transformer

Vaswani et al. [34] first proposed the Transformer model,
which achieved significant success in the field of natural
language processing. Subsequently, the Transformer has been
gradually introduced into various visual tasks. The Vision
Transformer (ViT) model proposed by Dosovitskiy et al.
[6] transforms images into a series of patches. Its core
mechanism employs a self-attention mechanism to model
the interactions among its inputs, demonstrating outstanding
performance in visual tasks. VSR-Transformer [2] applies
the self-attention mechanism to super-resolution tasks using
a spatio-temporal convolutional self-attention layer that is
theoretically comprehensible. HAT [4] combines channel
attention with a window-based self-attention scheme, propos-
ing a hybrid attention transformer for image restoration.
Zhang et al. [41] first introduce the self-attention mechanism
into the task of blind face restoration, achieving a favorable
trade-off between quality and fidelity. Recently, the attention
mechanism [23], [30] has also proven effective in the field of
image restoration. Researchers have focused on integrating
the attention mechanism to enhance the processing of critical

facial areas. Methods based on attention primarily capture
global facial information, resulting in superior performance.

III. METHOD
A. Framework Overview

In this section, we present a detailed description of the
proposed model architecture. Our primary objective is to
reconstruct high-quality facial images that not only possess
lifelike facial details but also maintain the authenticity of
the original degraded images. Given an input facial image Il,
whose level of degradation is unknown, our blind restoration
approach aims to estimate a high-quality image Irec, which
closely approximates the real image Il in terms of both
authenticity and fidelity.

The overall framework of the restoration process is de-
picted in Fig. 2, primarily consists of three components: an
encoder, a decoder, and a semantic-aware fusion module.
Specifically, given a low-quality face image Il ∈ RH×W×3

suffering from unknown degradation, where W and H repre-
sent the width and height of the image, respectively. Firstly,
the encoder E is used to extract facial features from the low-
quality image x, resulting in a feature fen, (n ∈ {1,2, . . .N}),
N denotes the number of scales used for subsequent feature
fusion. Then, based on the extracted features fen, pre-trained
codebook input features Zd are obtained, leading to the
generation of vector quantized features Zq.

After that, feature fusion is conducted in the Semantic
Awareness Fusion Module, where degraded facial features
fen, facial semantic information Zseg, and high-quality facial
details Zq are integrated to yield the fused feature fm.
Beyond general reconstruction, our method also incorporates
a local detail enhancement module specifically for key facial
regions such as the eyes and mouth. This module plays
a critical role in refining and accentuating subtle details,
thereby significantly improving the overall perceptual quality
of the restored facial images. Finally, these features are fed
into the decoder D to reconstruct the high-quality face image
Irec.



B. Semantic-aware Fusion Module

When refining image features with semantic priors, it is
crucial to consider the differences between the two sources of
information. Vision Transformer (ViT) is an effective method
for context modeling in computer vision. Most methods
based on ViT[23], [30] adopt a self-attention mechanism
to capture global information in images. However, the self-
attention mechanism, when applied to process a single input
sequence, derives Query (Q), Key (K), and Value (V ) solely
from that sequence. Relying exclusively on degraded facial
images as the only information source is insufficient to
capture detailed features in images.

To mitigate this issue, in this work, we employ multi-head
cross-attention to enhance the detailed facial information
modeling process. Q, K and V , derived from different
information sources, enable the model to effectively fuse
facial semantic information with degraded facial features.
This guides the model to more accurately restore the structure
and expression characteristics of the face, providing finer
repair details. Firstly, we introduce the multi-head cross-
attention mechanism used, where F1, F2 ∈ RH′×W ′×C

represent two different sources of information.

Q = F1Wq + bq,K = F2Wk + bk, V = F2Wv + bv, (1)

where Wq/k/v ∈ RC×C , and bq/k/v ∈ RC are learnable
parameters. Then, divide Q, K, and V into multiple heads
along the channel dimension and calculate the attention
scores for each head separately:

Zi = Softmax

(
QiK

T
i√

Ch

)
Vi, i = 1, 2, . . . , Nh, (2)

where Ch = C/Nh,and then concatenate the outputs of each
head to obtain the final output of multi-head attention:

Zattn = Concat (Z1, Z2, . . . ZNh
) , (3)

where Nh represents the number of attention heads.
The Semantic-aware Fusion Module aims to effectively

integrate semantic information with degraded facial features,
thereby enhancing the understanding and reconstruction ca-
pabilities of facial structure, texture, and expression details.
As depicted in Fig. 3, SaFM receives three distinct inputs:
facial semantic information Zseg, degraded facial features
fen, and high-quality facial detail Zq. To fuse these diverse
sources of information, we employ three cross-attention
mechanisms. Initially, the first cross-attention module merges
the degraded facial features fen with high-quality detail
features Zq, and the intermediate features obtained are
further integrated with facial semantic priors Zseg using the
second cross-attention module. Concurrently, the third cross-
attention module independently combines the facial semantic
priors Zseg with the degraded features fen. Finally, the fusion
features generated from these two steps are summed to
produce the ultimate composite feature fm. This compos-
ite effectively amalgamates inputs from varied information
sources, ensuring an efficient interchange between semantic
priors and degraded features, and thereby more precisely

reconstructs and repairs facial details. This depth of fusion
strategy significantly enhances the naturalness and accuracy
of the restored face image.
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Fig. 3. Semantic-aware fusion module(SaFM) utilizes three multi-head
cross-attention mechanisms to fuse the three input features, resulting in the
semantically fused feature fm.

C. Local Detail Enhancement
Although the use of semantic priors yields good results,

the eyes and mouth of a human face often contain some
detailed information. These details are crucial as they reflect
a person’s expressions and emotions. To enhance the quality
of detail restoration in these areas, we introduce a Local
Detail Enhancement module (LDE).

Specifically, we utilize a semantic segmentation map
Zskip, based on the eyes and mouth to guide the restoration
process, focusing on these areas. Initially, the degraded
facial features fei are concatenated with the current decoder
features fdi along the channel dimension. This step is vital
for leveraging convolutional operations to further process the
concatenated features, thereby enhancing the details of key
facial regions. Subsequently, the semantic segmentation map
Zskip, which represents the eyes and mouth, is fused with
the concatenated features to obtain a detail-enhanced feature
map fdi−1. This feature map is then used in the subsequent
decoding process to generate more natural and realistic facial
restoration results.

D. Training Objective
We utilize a set of synthesized LQ-HQ face images for

training the whole network (the image synthesis process will



be detailed in the next section). Our training objectives con-
sist of pixel reconstruction loss that constrains the restored
high-quality face image Irec to approximate the ground truth
Ih, adversarial loss for restoring realistic facial textures and
identity loss.

1) Pixel Reconstruction Loss. We employ the widely
used L1 loss and perceptual Loss [18] in pixel space as the
reconstruction loss, denoted as:

Lpix = ||Ih − Irec||1 + λpix||ϕ (Ih)− ϕ (Irec) ||22, (4)

where λpix represents the weight of the pixel reconstruction
loss, ϕ is the pretrained VGG-19 [33] network and we use
the {conv1, . . . , conv5} feature maps.

2) Adversarial Loss. We employ the adversarial loss
to encourage the model to generate realistic textures. Due
to the crucial facial components such as eyes and mouth
playing significant roles in facial representation, in order to
further enhance the perceptually important facial features,
our adversarial loss is not only applied to the entire facial
image but also separately addressed for the left eye, right
eye, and mouth. The overall facial image loss is as follows,
where Dd is the discriminator trained on facial images:

Lglobal
adv = λadv [logDd (Ih) + log (1−Dd (Irec))] . (5)

The definition of the loss for key facial components is as
follows, where the first term is the discriminative loss, and
the second term is the feature style loss:

Llocal
adv = λd

∑
r

[logDr (Rr (Ih)) + log (1−Dr (Rr (Irec)))]

+ λs

∑
||Gram (φ (Rr (Ih)))−Gram (φ (Rr (Irec))) ||22,

(6)
where Dr represents the discriminator for a specific region

r of a facial image (left eye, right eye, mouth). The region
r is obtained through ROI [12] alignment to acquire Rr.
φ denotes the multi-resolution features of the discriminator
Dr trained on region r. Gram represents the Gram matrix
[9], which calculates feature correlations to measure style
differences. λd and λs respectively signify the loss weights
for local discriminative loss and feature style loss.

3) Identity Preserving Loss. We draw inspiration from
GFP-GAN[35] and apply identity loss in our model to
ensure that the restored image aligns with the original in
terms of identity features, preventing any deviations from
the characteristics of the original image during the restoration
process:

Lid = λid||η (Ih)− η (Irec) ||22, (7)

where η denotes the identity feature extracted from ArcFace
[5] which is a well-trained face recognition model. λid

denotes the weight of identity preserving loss.
The overall model training objective is a combination of

all the loss functions proposed above:

Ltotal = Lpix + Lglobal
adv + Llocal

adv + Lid. (8)

We will provide a detailed explanation of the hyperparameter
settings for the loss functions in the next section.

IV. EXPERIMENTS

A. Datasets

Training Dataset. We train our models on the FFHQ [19]
dataset, which consists of 70,000 high-quality face images
with a resolution of 10242. We resize all the images to 5122

during training, and then synthesize the LQ images following
a typical degradation model:

Il = {JPEGq ((Ih ∗ kσ) ↓ r + nδ)} ↑r (9)

where Il and Ih represent low-quality and high-quality
images, respectively, kσ is a Gaussian kernel with a width
of σ, ↓r and ↑r are bicubic down-sampling or up-sampling
operators with a given scale factor r, nδ is additive Gaussian
white noise with a standard deviation of σ, and JPEGq

denotes the JPEG compression process with a quality factor
of q.

Testing Dataset. We evaluate the model on a synthetic
dataset and three distinct real datasets from different sources.
None of these datasets overlap with our training dataset. The
synthetic dataset is represented as CelebA-Test, consisting
of 3000 high-quality (HQ) images sourced from CelebA-HQ
dataset [26]. The corresponding low-quality (LQ) images are
synthesized using the degradation methods described above.
For the real dataset LFW-Test, it comprises the first image
of each identity from the original LFW [15] verification
partition, totaling 1711 images. CelebChild-Test includes
180 images of celebrity children’s faces collected from the
internet, and WebPhoto-Test [35] consists of 392 faces from
real-life situations

B. Implementation and Evaluation Metric

Implementation Details. In this work, the low-quality
face images used are of dimensions 512 × 512 × 3, and
the segmentation maps of the generated face images Zseg

are of dimensions 512 × 512 × 1. The weight factors for
the loss function were set as λpix = λd = 1, λs = 2000,
λadv = 0.8, and λid = 3. We employed the Adam optimizer
[20] for training with a learning rate of 4.5e−6, and the entire
training process consisted of 60, 000 iterations. The training
was conducted on four NVIDIA GeForce RTX 4090 GPUs.

To simulate various degrees of degraded images, for each
training image pair, we randomly sample hyperparameters σ,
r, δ, and q from the ranges [0.1, 5], [0.1, 8], [0, 15], [70, 100],
respectively. Additionally, we introduce color jitter during
training to enhance color diversity. Furthermore, to better
handle mildly degraded images, we carefully select 10% of
high-quality images to serve as inputs for low-quality images.

Metrics. Our evaluation metrics include two widely used
non-reference perceptual metrics: Frchet Inception Distance
(FID) [13] and Natural Image Quality Evaluator (NIQE)
[28], and three widely used reference metrics Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM),
and Learned Perceptual Image Patch Similarity (LPIPS) [42].
Specifically, FID measures the Kullback-Leibler divergence
between the feature distributions (assumed to be Gaussian)
of the restored image and the ground truth image. LPIPS



Fig. 4. Qualitative comparisons on the Synthetic CelebA-Test dataset, our restoration results demonstrate enhanced realism and richer details, particularly
in critical areas such as hair, mouth, eyes, and skin textures. Our method generates a more natural and lifelike appearance compared to other methods.
Please zoom in for a better view.

is a learned perceptual similarity metric based on the com-
putation of deep features using VGG [33]. Additionally, we
introduce identity distance (IDD) to assess the fidelity of the
restored facial images. IDD is the angular distance between
the features of the restored facial image and its corresponding
ground truth. We employ the pretrained ArcFace [5] face
recognition model to extract features.

C. Comparison with State-of-the-art Methods

To validate the effectiveness of our proposed method, we
compared its performance with several state-of-the-art face
restoration methods, including GFP-GAN[35], VQFR[11],
CodeFormer [44], RestoreFormer [37], and GPEN [39].

Synthetic CelebA-Test. The quantitative results of the
above-mentioned method compared with our proposed
method on the synthetic dataset CelebA-Test are presented
in Tab. I. The results in Tab. I demonstrate that our method
exhibits significant advantages across multiple metrics. We
achieved the lowest LPIPS, indicating that our restoration
results are perceptually closer to the real values in terms
of perception, demonstrating higher visual similarity. We
obtained the lowest IDD and NIQE, indicating that the output
is minimally different from the distributions of real and nat-
ural face images, resulting in more realistic and fidelity face
images. Additionally, our method preserves better identity
features.

The visualization results, as shown in the Fig. 4, indicate
that our proposed method generates higher quality facial
components compared to other methods. The restoration
results demonstrate a more natural appearance, especially
in the detailing of key areas such as the eyes, mouth, and
glasses. This suggests that the exceptional performance of

TABLE I
QUANTITATIVE COMPARISON ON THE CELEBA-TEST DATASET FOR

BLIND FACE RESTORATION. OUR METHOD PERFORMS BETTER ON

NIQE, LPIPS, AND IDD METRICS, INDICATING THAT OUR RESULTS

ARE PERCEPTUALLY CLOSER TO THE ACTUAL VALUES. THE RESTORED

FACE IMAGES ARE MORE REALISTIC AND HAVE HIGHER FIDELITY. OUR

APPROACH ALSO ACHIEVES BETTER RESULTS ON PSNR AND SSIM.

Methods PSNR↑ SSIM↑ LPIPS↓ FID↓ NIQE↓ IDD↓

Input 29.15 0.7279 0.3969 94.01 7.933 0.6141

GFP-GAN [35] 27.01 0.6668 0.3076 70.61 4.472 0.3951

CodeFormer [44] 26.67 0.7174 0.3001 56.21 4.765 0.4724

GPEN [39] 27.14 0.7188 0.333 57.48 4.413 0.3631

VQFR [11] 24.13 0.6662 0.327 49.24 4.189 0.6476

RestoreFormer [37] 25.14 0.6601 0.3289 46.72 4.419 0.4245

DifFace [40] 24.50 0.6699 0.3668 43.26 4.226 0.7924

Ours 26.65 0.7156 0.2914 43.89 3.861 0.3183

our method in maintaining high fidelity. The faces restored
by GFP-GAN [35] are overly smoothed, failing to recover
clear facial components and textures, as seen in the ex-
cessively smooth skin texture and the loss of details like
facial spots in the third row. Although VQFR [11] and
RestoreFormer [37] achieve clearer facial images, they fall
short in dealing with details in critical facial areas such as
the mouth and eyes. As an example, the detail processing
of teeth in the first row lacks naturalness, and the wrinkles
and texture details around the eyes in the second row are not
adequately addressed. While DifFace [40] performs better
in terms of FID, resulting in high-quality facial images, its



real-world GFP-GAN VQFR RestoreFormer DifFace CodeFormer Ours

Fig. 5. Qualitative comparisons on the three real-world datasets, LFW-Test, CelebChild-Test, and WebPhoto-Test, our restoration results demonstrate
enhanced realism and richer details, particularly in critical areas such as hair, mouth, and skin textures. Our method generates a more natural and lifelike
appearance compared to other methods. Please zoom in for a better view.

fidelity is significantly reduced. In comparison, our method
successfully restores accurate facial expressions and detailed
positioning.

Real-world Datasets. Our proposed method and com-
parative methods were quantitatively evaluated on three
real-world test datasets: LFW-Test, CelebChild-Test, and
WebPhoto-Test, with the results detailed in Tab. II. Analysis
of the data presented in Tab. II reveals that our method
demonstrated superior performance in terms of NIQE scores,
significantly outperforming the runner-up. The NIQE metric
is utilized for assessing the naturalness and overall quality of
images, indicating that our method is capable of generating
images that are not only more natural but also visually more
satisfying.

The visualization results, as shown in Fig. 5, indicate that
although most methods can obtain clear faces from slightly

degraded damaged face images, the fidelity in key facial
areas such as the eyes, mouth, and spotted skin regions is still
insufficient. In contrast, the method we propose demonstrates
a significant advantage in these critical areas, successfully
capturing more details, effectively maintaining the individ-
ual’s identity features, and producing natural results with rich
details. This is attributed to our use of facial semantic priors
combined with facial context information.

D. Ablation Study

Based on the description above, our proposed method ef-
fectively utilizes facial semantic priors to enhance the quality
of facial details in image restoration. To better understand
the role of semantic priors in our approach, we designed
three variant networks: (1) w/o semantic prior, which refers
to a model that does not use semantic priors; (2) w/o-SaFM,
indicating the performance of using only the detail enhance-
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Fig. 6. Visual comparison between different variant networks of our method. (a) LQ input; (b) w/o semantic prior; (c) w/o-SaFM; (d) w/o-LDE; (e) Our
proposed method; (f) Ground truth. Please zoom in to see the details.

TABLE II
QUANTITATIVE COMPARISONS ON THE THREE REAL-WORLD DATASETS,
LFW-TEST, CELEBCHILD-TEST, AND WEBPHOTO-TEST. OUR METHOD

PERFORMS BETTER IN TERMS OF NIQE SCORES AND ALSO ACHIEVES

FAVORABLE RESULTS ON THE FID METRIC.

dataset LFW-Test CelebChild-Test WebPhoto-Test

Methods FID↓ NIQE↓ FID↓ NIQE↓ FID↓ NIQE↓

Input 124.97 8.575 144.42 9.028 170.96 12.607

GFP-GAN [35] 67.09 4.649 119.63 4.879 101.52 5.400

CodeFormer [44] 51.94 4.519 116.25 4.981 84.89 4.724

GPEN [39] 51.37 4.548 109.3 4.632 96.90 5.591

VQFR [11] 49.43 3.902 114.71 4.503 86.34 4.728

RestoreFormer [37] 47.75 4.145 101.18 4.585 78.28 4.466

DifFace [40] 45.44 4.224 112.31 4.577 88.52 4.652

Ours 49.51 3.501 112.01 3.991 83.57 3.941

TABLE III
ABLATION STUDIES OF VARIANT NETWORKS.

Configurations FID↓ NIQE↓ LPIPS↓ PSNR↑ IDD↓

a)w/o semanric piror 46.22 3.948 0.3263 25.23 0.4141
b)w/o-SaFM 44.48 3.928 0.3207 25.72 0.3739
c)w/o-LDE 43.54 3.857 0.2995 25.60 0.3631

Ours 43.89 3.861 0.2914 26.65 0.3183

ment module; and (3) w/o-LDE, denoting the absence of
the local detail enhancement module. Our ablation study
conducted on the synthesized celeba-test dataset, we utilized
PSNR, FID, LPIPS, NIQE, and IDD as evaluation metrics
to demonstrate the effectiveness of our proposed method.
The detailed experimental results are listed in Tab. III. It
is observable that our method outperforms other variant
networks in terms of quantitative measurements.

The visualization results, as shown in Fig. 6,reveal that
while the use of semantic priors can generate seemingly
clean facial images, there are noticeable unnatural aspects in

crucial facial structures. Specifically, in the first row, there’s
an additional white area in the middle of the mouth, and in
the second row, the structure of the eyes has significantly de-
formed, with the color of the eyeballs shifting and generating
unnatural artifacts. This may be attributed to the lack of se-
mantic priors for key facial structures, leading to inaccuracies
in capturing and reproducing the true structure of the eyes
during the modeling process. Furthermore, the generated
eyelashes appear particularly disordered, resulting in a rough
and incoherent overall appearance of the eyes. This further
confirms the importance of incorporating semantic priors
in the complex process of facial feature reconstruction to
enhance fidelity. The results from w/o-SaFM and w/o-LDE
look slightly better than those without added semantic priors,
but unnatural artifacts still occur in the eye area. Overall, our
method demonstrates superior performance over its variants,
validating the effectiveness of using semantic priors in the
BFR task.

V. CONCLUSION

In this work, our objective is to tackle the challenging task
of blind face restoration, enhancing the realism and fidelity
of facial images in both synthetic and real-world images.
Leveraging facial semantic information as semantic priors,
we integrate the semantic priors into the facial restoration
process using a multi-head cross-attention mechanism. We
enhance the details of the eye and mouth regions based on
the semantic and structural information in different resolution
features, thereby improving the authenticity and fidelity of fa-
cial restoration. We conducted extensive experiments on real-
world and synthetic datasets, demonstrating the outstanding
capability of our approach in handling real-world images,
surpassing existing techniques.
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