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Abstract— Training a real-time gesture recognition model
heavily relies on annotated data. However, manual data an-
notation is costly and demands substantial human effort. In
order to address this challenge, we propose a framework
that can automatically annotate gesture classes and identify
their temporal ranges. Our framework consists of two key
components: (1) a novel annotation model that leverages the
Connectionist Temporal Classification (CTC) loss, and (2) a
semi-supervised learning pipeline that enables the model to
improve its performance by training on its own predictions,
known as pseudo labels. These high-quality pseudo labels can
also be used to enhance the accuracy of other downstream
gesture recognition models. To evaluate our framework, we
conducted experiments using two publicly available gesture
datasets. Our ablation study demonstrates that our annotation
model design surpasses the baseline in terms of both gesture
classification accuracy (3-4% improvement) and localization
accuracy (71-75% improvement). Additionally, we illustrate
that the pseudo-labeled dataset produced from the proposed
framework significantly boosts the accuracy of a pre-trained
downstream gesture recognition model by 11-18%. We believe
that this annotation framework has immense potential to
improve the training of downstream gesture recognition models
using unlabeled datasets.

I. INTRODUCTION

Hand gesture recognition is a widely applied technology
in various fields such as augmented reality (AR) [35], and
virtual reality (VR) [39], [43]. Various modalities of hand
gesture data can be utilized for recognition, such as RGB,
optical flow, depth, IR, IR-disparity, and 2D/3D skeletons.
Contemporary AR and VR head-mounted devices (HMDs)
track the user’s hands, providing access to real-time 3D hand
skeleton data. In this paper, our focus is on using 3D hand
skeleton data. This choice is motivated by the widespread
availability of 3D hand skeleton data in modern HMDs and
its compatibility across different sensors and devices [43].

A typical pipeline to build a robust gesture recognition
model usually starts with data collection, followed by data
annotation and model training. The annotation step involves
two steps: (1) marking the class of the gesture, and (2)
localizing the time range of a gesture. State-of-the-art gesture
recognition methods are primarily based on deep-learning
techniques [23], [16], which require a significant amount of
labeled data for training [31]. Insufficient training data can
result in overfitting or a failure to learn for a deep neural-
network model [42]. Unfortunately, annotating data can be
both time-consuming and costly, especially for open-world
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gesture recognition [46]. Additionally, many state-of-the-
art gesture recognition methods require strongly-segmented
data (frame-wise segmentation, i.e., Step 2 of annotation)
for high-quality training [16], [4], [23], which needs more
intense human manual efforts and adds another layer of
expense to the data annotation process.

Previous research has focused on addressing the issue
of data sparsity in gesture recognition. Various techniques
for data augmentation have been proposed, such as the use
of a Generative Adversarial Network (GAN) for realistic
transformations on gesture skeleton data [42], [44], and the
use of unrealistic distortions like cutout [6] and mixup [61]
to regularize neural network training. Another recent work
by Xu et al. [56] leveraged a few-shot learning framework
to reduce the dataset size requirement. However, while these
techniques help alleviate the issue of data sparsity, they all
rely on an existing annotated dataset, which still suffers
from the high cost of data annotation. There is very little
research on automating the gesture annotation process that
can achieve the two annotation steps simultaneously [19],
[14]. Meanwhile, the efficient use of rich unlabeled datasets
is underexplored.

To address the gaps, we develop a novel automatic gesture
annotation framework (see the red borders in Figure 1). Our
framework contains two components: 1) an annotation model
(see Figure 2) that enables the prediction of unlabeled gesture
data in both gesture classification (step 1 of annotation) and
gesture nucleus localization (step 2 of annotation)!. 2) a
semi-supervised learning pipeline that uses the annotation
model (i.e., the first component) to predict unlabeled data
and then uses these predictions as pseudo-labels to further
augment the annotation model itself. These high-quality
labels can then be used to further fine-tune any downstream
gesture recognition models (see the upper part of Figure 1).

By combining these components, we have developed a ro-
bust and automated framework for annotating gesture data of
high quality. This framework enables large-scale annotation
without the need for extensive human labor. It is important
to emphasize that our framework primarily focuses on the
annotation step, which serves as a crucial support for training
downstream gesture recognition models in real-time systems.

A gesture is composed of three phases: preparation phase, nucleus, and
retraction phase. Gesture localization is defined by determining the temporal
position of the gesture nucleus, which is the core part of gesture recognition.
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Fig. 1: Our framework provides an automatic gesture annotation solution. The red borders highlight our main contribution.
The framework consists of two components: (1) a novel annotation model that utilizes Connectionist Temporal Classification
(CTC) loss (see Figure 2), and (2) a semi-supervised pipeline that improves the model’s performance by training on its
own predictions, i.e., pseudo labels. In real-life (open-world), the gesture annotation framework operates as follows: first, a
real-time gesture recognition model and our proposed annotation model are pre-trained on a small labeled dataset. Next, the
annotation model is integrated into the pseudo-labeling process, where it produces pseudo labels by annotating an unlabeled
dataset, which is then used to augment the annotation model. After pseudo-labeling is complete, the final high-quality
pseudo-labels are used to fine-tune the pre-trained real-time gesture recognition model.

To verify the effectiveness of our framework, we car-
ried out an in-depth analysis using two public gesture-
related skeleton-based datasets: SHREC’2021 [3] and Online
DHG [5]. Initially, we conducted an ablation study to assess
the contribution of our different design blocks within the
annotation model on gesture classification and nucleus lo-
calization tasks. The results showed our model outperforms
the baseline model by an improved gesture classification
accuracy of 4.3% (3.4%) and an improved gesture nucleus
localization accuracy of 71.4% (75.0%) in SHREC’2021
dataset (Online DHG dataset). Next, we used our annotation
framework to label a subset of the public datasets mentioned
above. We then used this pseudo-labeled dataset, created by
our framework, to fine-tune a pre-trained downstream gesture
recognition model. The evaluation showed that this pseudo-
labeled dataset greatly enhanced the accuracy of the pre-
trained downstream gesture recognition model by 11-18%.

To the best of the author’s knowledge, this is the first
instance of proposing an automatic and semi-supervised
gesture annotation framework that performs gesture classi-
fication and nucleus localization simultaneously.

II. RELATED WORK

We first briefly overview the related work of gesture recog-
nition and localization. We then summarize the existing work
on gesture annotation. We also introduce semi-supervised
learning background.

A. Gesture Recognition with Deep Learning

Recently, deep learning techniques have become increas-
ingly popular for gesture recognition. Recurrent neural net-
works (RNNs) have demonstrated effectiveness in identifying

spatial and temporal relationships in activity recognition,
both with RGB-based and skeleton-based input [24], [45].
However, when there is a large gap between the input
data and the target task, conventional RNNs are not ca-
pable of extracting relevant information. To address this
issue, LSTMs have been proposed to manage ‘long-term
dependencies’[12], [27], [41]. Additionally, graph and man-
ifold learning has also achieved success in gesture recog-
nition, as seen in DG-STA [4] and ST-TS-HGR-NET [32].
There has also been a growing interest in gesture recognition
in AR and VR applications, such as 3D hand pose estimation
using an infrared camera [33] and fast recognition of foot
gestures for virtual locomotion [47].

Different modalities of hand gesture data can be used as
input for gesture recognition, such as RGB, optical flow,
depth, IR-left, IR-disparity, time-series data (IMU, EMG,
etc.), non-optical 2D data (tomography, acoustic spectro-
grams, etc.), and 2D/3D skeletons [52], [59], [13], [55],
[29], [26], [21], [51], [9]. The framework proposed in this
paper can be easily adapted to different input types. As an
illustrating example, this paper uses skeleton data, which
records the 2D or 3D positions of key points/joints on the
hand. With the advancement of hardware (e.g., Microsoft
HoloLens, Intel RealSense, and Leap Motion Controller), the
use of skeleton data is becoming increasingly popular among
different platforms and modalities. These devices provide
precise skeletal data of the hand and fingers in the form
of a full 3D skeleton.

B. Gesture Localization

Previous studies have explored gesture localization using
RGB data, with early works such as [8], [28], [37] primarily



focusing on spatial segmentation, which involves separating
the hand from its surroundings. However, it is important
to note that temporal segmentation, specifically determining
the timing of the gesture nucleus, is equally important in
addition to spatial segmentation. This temporal aspect of
gesture localization is commonly referred to as ‘“nucleus
localization.” Existing approaches often employ heuristic
methods to locate gestures, such as the use of sliding
windows to analyze the sequence of output confidence/loss
from a gesture recognition model and identify peaks or
valleys [57], [58]. However, our experiments have shown
that such heuristic methods face challenges when dealing
with variations in gestures, as depicted in Figure 3.

C. Gesture Annotation

Traditionally, manual annotation software has been em-
ployed to annotate gestures, with human annotators manually
detecting the start and end points of each gesture. However,
this process is time-consuming and requires significant labor.
As a result, there has been growing interest in develop-
ing automatic annotation tools. While various fields have
explored this idea (e.g., [60], [34], [7]), relatively fewer
works have focused on gesture data specifically. One relevant
work by Kratz et al. [19] presents preliminary research on
automatically segmenting motion gestures tracked by IMUs.
They suggest that by recognizing gesture execution phases
from motion data, it might be possible to automatically
identify the start and end points of gestures. However, their
work primarily focuses on gesture localization and does
not address gesture classification. More closely related to
our work, Lenaga et al.[14] propose the use of an Ac-
tive Learning (AL) [36] framework to automatically detect
sign language gesture occurrences in RGB videos. Their
approach requires manual annotation for only a small subset
of the videos, benefiting researchers studying multimodal
communication. However, their primary application area is
sign language gestures in RGB videos, which predominantly
focuses on spatial data. In contrast, our framework focuses
on temporal data for gesture annotation. Furthermore, our
approach leverages a semi-supervised learning pipeline to
enhance the performance of annotation, setting it apart from
previous works.

D. Semi-Supervised Learning Methods

In recent years, there has been a growing interest in semi-
supervised Learning (SSL) due to its ability to leverage
large amounts of unlabeled data. SSL becomes particularly
valuable when labeled data is scarce or when the labeling
process is time-consuming and labor-intensive. Consistency
regularization [40], [1], [20] and pseudo-labeling [22], [54],
[38] are two popular methods utilized to make effective use
of unlabeled data, and they have been integrated into various
modern SSL algorithms [49], [2], [53].

The semi-supervised learning pipeline within our frame-
work draws inspiration from the recently developed Fix-
Match algorithm [48]. FixMatch combines these techniques

with both weak and strong data augmentations, yielding
remarkable results in SSL tasks.

III. PROBLEM FORMULATION

This section formulates gesture annotation and gesture
recognition and discusses their difference. We also explain
why simply using a conventional gesture recognition model
does not suit data annotation and why an annotation model
is necessary.

It is important to clarify that when referring to gesture
recognition, we specifically focus on real-time gesture recog-
nition. In this context, real-time gesture recognition involves
identifying gestures within a realistic sequence that includes
multiple gesture classes as well as background activities
(non-gestures), commonly observed in a sensor stream.

To achieve real-time gesture recognition, a typical ap-
proach is to utilize a sliding-window-based technique. At
each sliding step, a window is fed into the model, producing
class-conditional probabilities. The predicted gesture class
within the window is determined by taking the maximum
value from the probabilities. However, the conventional real-
time gesture recognition model is not well-suited for data
annotation, particularly for gesture nucleus localization. Post-
processing techniques need to be employed to localize the
gesture nucleus. However, these post-processing steps often
rely on heuristic methods (e.g., [43]), which may be suscep-
tible to variations in gestures and contextual differences.

Furthermore, although both gesture annotation and real-
time gesture recognition aim for accurate gesture classifica-
tion, they have different objectives. While real-time gesture
recognition models prioritize detecting gestures as quickly
as possible, gesture annotation additionally focuses on iden-
tifying the nucleus of the gesture as accurately as possible.

In contrast, an annotation model can incorporate gesture
nucleus localization as an inherent training objective since
it does not need to optimize for recognition latency. This
enables better architectural design choices to improve the
performance of the annotation task.

IV. PROPOSED FRAMEWORK

In this section, we describe our framework for annotating
gesture data.

A. Design Questions

We propose an annotation model with individual compo-
nents that are specifically designed to optimize two goals of
gesture annotation: gesture classification and gesture local-
ization. We start by answering four important model design
questions of our architecture.

1) Small Window Size vs Large Window Size: The
window size for a classification model is typically kept
small to ensure accurate classification, as it is believed
that a window should only be large enough to contain
one gesture [43] such that the input data is clearly
segmented and the model can be better trained. Another
main reason for using a small window size is to achieve
low recognition latency [30], which is not a primary
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Fig. 2: Due to the extended input window of the annotation
model, the true label has the capacity to encompass multiple
gestures simultaneously. In the illustrated case, the true
labels are {1, -, 3, - ,2}, where “-” represents background
activities (no gesture). The output of the annotation model
is a sequence of predicted labels that has the same length as
inputs. The loss function for the proposed annotation model
is a Connectionist Temporal Classification (CTC) loss. The
backbone of the model is an A-ResLSTM we adopted from
Shen et al. [43].

concern during the data annotation process. Moreover,
compared to a larger window, a small window contains
less information about previous timestamps and has
a narrower vision for gesture localization. Therefore,
we are using a sliding-window technique with a larger
window size to process multiple gestures in the input
sequence.

2) One Prediction Per Frame vs Multiple Predictions
Per Frame: When it comes to identifying gestures
in a sliding-window approach, a classification model
typically outputs a single vector of class-conditional
probabilities for all gesture classes (plus no gesture). If
the slide step is as small as one frame, the classification
model can output a single vector per frame. This is a
typical many-to-one mapping, as the input is a sequence
of vectors, and the output is one vector. However, such
a many-to-one mapping loses the fine-grained temporal
information by collapsing the multiple frames into one
single output. This will impact the gesture localization
task. In contrast, a many-to-many (many2many) archi-
tecture of each time window contains richer temporal
information and allows more dynamic and flexible ad-
justment between multiple windows. Therefore, we use
a many-to-many model to instantiate such architecture.
The model output is a sequence of class-conditional
probabilities and can be decoded as a sequence of
predicted classes, with overlapping predictions from
consecutive windows. This allows for dynamic adjust-
ments of earlier predictions based on later windows, and
helps to reduce noise in the final prediction.

3) Strongly-Segmented vs Weakly-Segmented Training

Data: It is important to note that a classification model
that is trained using cross-entropy loss typically requires
clearly defined and segmented gesture data. This means
that the start and end frames of the gesture must be
accurately labeled. As a result, the model requires
strongly-segmented training data. However, strongly-
segmented data requires extensive human labor. We
thus desire a model that can be trained using weakly-
segmented data, while still being able to learn the
temporal and spatial properties of the gesture nucleus
among the data. Therefore, to handle the challenge of
the need for strongly-segmented data, we adopt a Con-
nectionist Temporal Classification (CTC) loss, which
can automatically align the unsegmented input sequence
with the output sequence. This removes the requirement
for strong segmentation of gestural sequences. This loss
has been widely adopted in seq2seq model training [10].

4) Heuristic Parameters vs Automation: Shen et al. [43]
used heuristic threshold parameters to estimate gesture
locations. However, the accuracy of such an estimation
largely depends on the other parameters of the model
(window length, slide step etc.). This is because the
training label does not directly contain any positional
information about the gesture nucleus, and such a con-
ventional real-time gesture recognition model is not ex-
plicitly designed for this type of localization. Therefore,
we desire a model that does not need these heuristic
parameters. This is another reason supporting our choice
of the CTC loss. The spiky nature of the CTC’s output
can eliminate the need for post-processing [50], [18],
and allow for the localization of the gesture nucleus
without the need for any heuristic parameters. We can
identify the nucleus position directly by identifying the
spike position. Moreover, greedy search can be used to
decode the model output into the sequence of gesture
classes.

B. Annotation Model

After answering these four design questions, we now
introduce our model’s individual components in detail.

1) Seqg2seq Model: We design a seq2seq model that is
a many2many model. It has an input window W of frame
length L (window size) and an output which is a matrix of
probabilities M € REX(K+1) It defines the probabilities
of detecting a gesture (or no gesture) k at time ¢ in an
input window W: p(k,t | W) = M.Vt € [0,N). The
backbone of our seq2seq model is an A-ResLSTM model we
adopted from Shen et al. [43], which is one of the state-of-
the-art neural network architectures for gesture recognition.
This network is composed of residual blocks [11] and bi-
directional LSTM layers [12] with an attention layer [25].

2) Connectionist temporal classification (CTC): Connec-
tionist temporal classification (CTC) is a type of neural
network output that can be constructed into a loss func-
tion [10]. It is designed to tackle the alignment prob-
lems between two sequences with very different lengths,
such as in handwriting recognition where the written text
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Fig. 3: Demonstration of the network output probabilities
from a CTC and CE (cross-entropy) trained network versus
the ground truth [50]. The spike of CTC loss clearly captures
the gesture nucleus, while the curve of CE loss needs
post-processing. For example, the CTC loss successfully
distinguishes two consecutive same gestures, while the CE
loss confuses them together.

is often longer than the number of characters. This is
achieved by introducing a pseudo-character (called blank
—, or no label) to encode duplicate characters in hand-
writing recognition. In the gesture recognition case, the
pseudo-character is the same as no gesture. We can
then condense repeated class labels and remove no ges-
ture labels, e.g., [—,— —,1,1,1,—,2,—.3,3,3,—, -] =
1,1,1,—,—,—,2,2,— —,3,—] = [1,2,3], where 1, 2, 3
are actual gesture classes and “—" is no gesture.
Mathematically, we define a path 7 as a possible mapping
of the input sequence W of length L into a sequence of
training class labels y. The probability of observing path 7
is p(r | W) = [[, ML ,Vr € A", where 7 is the class
label predicted at time ¢ in path 7, and A’ is the set of
length L sequences (paths 7) over the gesture dictionary
A’ = AU {no gesture}. The next step is to define a many-
to-one mapping operator y = ~y(7) to map the paths into
a sequence of gesture labels, v : A" — ASE after
condensing class labels and removing no gesture labels as
previously noted. Thus many paths 7 under 7 result in the
same gesture sequence y. The probability of observing the
gesture class sequence y given an input window W is the
sum of the condition probabilities of all path = mapping to

that sequence, v~ 1(y) = {7 : v(7) = y}:

porc(y [W) =Y (p(x | W)) ()
TeyT(y)

Therefore, the CTC loss is:
Lere = —log(perc(y | W)) )

expressed in the log domain. perc(y | W) can be calculated

efficiently using a dynamic programming algorithm [10].
Derivatives of the loss can then be calculated for backprop-
agation.

Compared to conventional cross-entropy (CE) loss, CTC
loss has the benefit of producing output with distinct, sharp
predictions that can accurately capture consecutive gestures.
In contrast, a model trained with CE tends to blend predic-
tions of the same class together (see Figure 3). This means
that in order to correctly identify when one gesture has been
performed, the output from a CE-trained classification model
must be processed further with some heuristic methods
with errors (e.g., a single-time activation algorithm [43]).
However, with CTC, the sharp nature of the predictions
automatically eliminates such error-prone step [50], [30],
[10].

3) Dynamic Adjustment: Due to the sliding-window fash-
ion, for a window W of length L sliding at step IV, the
model outputs M for each window. M consists of L vectors
of class-conditional probabilities p. Therefore, the model
will produce L/N times class-conditional probabilities p
at each step/frame, forming a sequence (py,Ps,---, Py, /N).
We perform a dynamic adjustment on labeling and nucleus
localization. Specifically, we average these predictions to
form one vector of class-conditional probabilities for each
step, i.€. Pyyerage = average(py, Pas -, Pr/n) We determine
the location of the gesture’s nucleus by identifying the
position of the highest point in the gesture’s prediction.

4) Decoding: There are different decoding algorithms for
the dynamic adjustment output. One option is greedy search,
which approximates the solution by taking the most likely
class at each step in the matrix M. It is efficient to compute
as it simply concatenates the most active outputs at each step.
Another option is beam search. It uses more information
from the output sequence by expanding all possible next
steps and keeping track of the k£ most likely steps, where k
is the beam factor, or the maximum number of complexes to
be specialized. It requires more memory and computational
power as k increases. But it can generate multiple sequence
candidates, which allows for selection based on other con-
textual information, such as a user’s posture. However, as
there is currently no gesture dataset containing such context
information, we leave the exploration of beam search or other
decoding methods as future work and use greedy search in
this paper.

Our newly proposed annotation model enables accurate
gesture annotations on unlabeled datasets, including both
classification and localization. These annotations can be
utilized to train various downstream gesture recognition
models. However, we also recognize that the potential of
unlabeled datasets can be further leveraged. To address
this, we introduce a semi-supervised learning pipeline that
enhances the performance of both the annotation model
and downstream gesture recognition models. This pipeline
maximizes the benefits of unlabeled data and improves the
overall performance of the framework.



C. Semi-Supervised Learning Pipeline with Pseudo-Labeling

Once we have an annotation model, we can apply it to
unlabeled datasets and use the generated pseudo-labels to
further augment the annotation model. This is a technique
called pseudo-labeling in semi-supervised learning. In our
case, we design a pseudo-labeling pipeline with a carefully
designed training process. Specifically, we first generate two
augmented versions of the same gesture data, one stronger
and one weaker. We apply our seed annotation model on
the weakly-augmented data and generate pseudo-labels. This
is an easier task as the data is less perturbed. Then, for
those labels with high confidence, we assigned them to the
strongly-augmented version of the data (a harder task) and
further trained the annotation model. By progressing to a
more challenging task, the model can further improve its
performance.

Formally, let X = {(xp,y; : b € (1,..., B))} be a batch of
B labeled examples, where x; are the training examples and
y, are labels. Let U = uy, : b € (1, ..., uB) be a batch of uB
unlabeled examples where 4 is a hyperparameter that deter-
mines the relative sizes of X and U. Let fscq2scq denotes our
proposed seq2seq model. Our approach computes a pseudo-
label for each unlabeled sample which is then used in a CTC
loss function. We perform two types of augmentations: strong
and weak, denoted by A(-) and «f(-).

We denote the CTC loss function (not in the negative
log domain) as porc(y,x) from Equation 1 between label
y and input X. Let My = fseqoseq((up)) be the class-
conditional probability distribution produced by the model
given a weakly-augmented version of a given unlabeled
sample: «(up). Then we use y, = path_search(M,) as a
pseudo-label (path_search is our greedy search algorithm in
the decoding step in Sec. IV-B.4). We enforce the CTC loss
against the model’s output for a strongly-augmented version
of the unlabeled sample: A(uy):

1 & i
L= B ZH(LP,pathJearch(qb) > T)perc (¥ |, Aluy))
b=1

where LP_path_search is the log-probabilities of the best path
in greedy search, and 7 is the threshold,

We employ basic time-series transformations [15] for data
augmentation, which include scaling, shifting, time inter-
polation, and adding noise. These transformations help to
diversify the training data and enhance the robustness of the
model. For weak augmentation, we only apply noise; for
strong augmentation, we apply all the transformations.

The threshold for determining if the pseudo-labels should
be remained and be used to update the model controls the
trade-off between the quality and the quantity of pseudo-
labels. Recent work suggests that the quality of pseudo-
labels is more important than the quantity for a good perfor-
mance [48]. Thus we empirically set the threshold to 0.9.

V. EXPERIMENTS AND ANALYSIS

We conducted a series of experiments to evaluate our
proposed annotation model and the framework.

SHREC2021 [3] Online DHG [5]

Static one - four, OK, menu NA
rotation (counter-)clockwise,
Dynamic left, right, circle, v, cross  right/left, up/down,

cross, plus, v, shake

grab, pinch, tab, deny,
knob, expand

180 seqs of 3-5 gestures
occurring sequentially

Fine Dynamic grab, pinch, tab, expand

280 seqs of 10 gestures

Size . .
occurring sequentially

TABLE I: Contents of the datasets. Static gestures are
characterized by keeping a fixed hand pose for a minimum
amount of time, while dynamic gestures are characterized
by a single trajectory with an unchanged hand pose or
with finger articulation over time. Fine dynamic gestures are
characterized by a single trajectory with changing hand pose.

A. Evaluation Datasets

In order to ensure a thorough evaluation of our frame-
work, we perform our experiments on two publicly available
datasets. These datasets consist of sequences of unsegmented
gesture data, encompassing various types of gestures. The
specific details of the two datasets are as follows:

1) SHREC’2021 [3]: The dataset utilized in this study
consists of 18 distinct gesture classes belonging to
various types. It comprises a total of 180 gesture
sequences, each carefully designed to incorporate 3
to 5 gestures, accompanied by additional semi-random
hand movements labeled as non-gestures. The original
dictionary comprises 18 gestures, encompassing both
static and dynamic gestures.

2) Online DHG [5]: The dataset used in this study
comprises 14 distinct gesture classes from various
categories. It consists of 280 sequences where each
sequence contains 10 unsegmented gestures occurring
sequentially. The data in this dataset is represented in
the form of skeleton data, specifically capturing 22
joints for each hand skeleton. The skeleton data was
collected using a Leap Motion device.

Both datasets already provided a predefined split between
training and testing data. Thus, we conducted evaluations on
the designated testing sets.

B. Evaluation Metrics

We introduce our metrics to evaluate the tasks of gesture
classification and localization.

1) Gesture Classification Accuracy: Gesture annotation
would generate a sequence of classification output. We
use the Levenshtein distance (also known as minimum
edit distance) to evaluate the gesture classification per-
formance [18]. It is a metric defined as the minimum
number of single-character (in our case, classification
output of each frame) insertions, deletions, and substitu-
tions required to transform one string into another. The
accuracy for recognition performance is defined as:

B levenshtein(ypredict, Ytrue)
length (ytrue)

3)



SHREC’2021 [3] Online DHG [5]

Accuracy NNLE Accuracy NNLE
A-ResLSTM [43] w/ CE Loss (Baseline Model) 88.3 (£ 2.34) 042 (£0.07) 89.8 (£ 3.12) 0.44 (£ 0.03)
A-ResLSTM w/ CTC loss 90.6 (+ 1.45) 0.17 (£ 0.03) 91.5 (£ 3.35) 0.16 (£ 0.04)
A-ResLSTM w/ CTC loss & many2many 91.9 (£ 1.12)  0.14 (£ 0.03)  92.7 (£ 3.35)  0.15 (£ 0.04)
A-ResLSTM w/ CTC loss & many2many & dynamic adjustment  92.6 (£ 1.58)  0.12 (£ 0.02) 93.2 (+ 1.76) 0.11 (& 0.03)

TABLE II: Ablation study results by adding our multiple design parts step by step. NNLE is our metric for gesture localization
(Normalized Nucleus Labeling Error). The numbers in the brackets indicate std.

where ypredict and Y are the predicted and true list
of labels of the gestures, respectively.

2) Nucleus Localization Error: We propose a metric
Normalized Nucleus Localization Error (NNLE) to
measure how accurately our model can locate the
gesture nucleus. When a gesture is recognized, we
define the time for the start/end of the gesture as
1dx s4qrt/1dTen g, and the detected location of gesture nu-
cleus as idx,ucieus- FOr a accurate nucleus localization,
1T start < 1dTnuclens < 1dTenqg. NNLE is defined as:

1dTqctivation — (idxstart + Z.d'rend)/2 +1
Z'dmend - Z.dmsta'rt +1

“4)

A smaller NNLE means our annotation model is more
accurate for gesture localization (i.e., the nucleus is
closer to the center of the gesture).

C. Training Details

Our implementation was based on TensorFlow 2. We
utilized the Adam optimizer [17] with a starting learning
rate of 0.0001. To prevent overfitting, we employed early
stopping with a patience of 5. For both the Online DHG
and SHREC’2021 datasets, we used a window length of 200
for our model. It is important to note that the length of an
individual gesture within the datasets ranged from 20 to 50
frames, corresponding to a duration of approximately 0.4 to
1 second.

D. Ablation Study

Our novel annotation model essentially consists of mul-
tiple design blocks: (1) using the CTC loss instead of a
basic CE loss, (2) using a many-to-many architecture (i.e.,
seq2seq) instead of a many-to-one architecture, and (3) using
dynamic adjustment on labeling and nucleus localization.
To evaluate the effectiveness of each design block, we
performed an ablation study through a step-by-step addition
process.

Table 1II illustrates the ablation study results. Compared to
the baseline (A-ResLSTM trained with Cross-Entropy (CE)
loss), our model significantly reduces the gesture localization
error by 0.30 (71.4%) and 0.33 (75.0%). Regarding gesture
classification accuracy, our model design achieves improve-
ments of 4.3% on the SHREC 2021 dataset and 3.4% on the
Online DHG dataset compared to the baseline.

Each of the three blocks contributes approximately equally
to the overall gesture classification accuracy improvement.
For gesture nucleus localization, the main contribution stems

from the application of the Connectionist Temporal Classi-
fication (CTC) loss. This highlights the unique character of
the CTC-trained model in producing outputs with a spiky
nature, eliminating the need for complex post-processing
techniques (see Figure 3). In contrast, CE-trained networks
require post-processing to determine the final label, often
relying on heuristic methods.

E. Annotation Framework Evaluation

To evaluate the effectiveness of our framework, we incor-
porate a similar pseudo-labeling process into the baseline
model described in Section V-D. This modified version
serves as a baseline framework for comparison.

1) Baseline: It is important to note that the pseudo
labeling semi-supervised learning pipeline we developed
specifically for our proposed annotation model cannot be
directly applied to the baseline model, as the baseline model
is trained using Cross-Entropy (CE) loss. Therefore, we made
modifications to adapt the pseudo-labeling process to the
baseline model, enabling a fair comparison between the two
frameworks.

Formally, we denote the CE loss function between two
probability distributions p and ¢ as H(p,q). Let ¢, =
p(y | a(up)) be the class-conditional probability distribution
produced by the model given a weakly-augmented version of
a given unlabeled sample: u. Then we use ¢, = arg max(qp)
through the path decoding algorithm as a pseudo-label, and
we enforce the CE loss against the model’s output for a
strongly-augmented version of uy:

uB

Z]I(argmax(qb) > 7)H (g [, p(y | Alap)))
b=1

1

L=—
uB

where 7 is the threshold. The rest of the semi-supervised
learning pipeline stays the same as in Section I'V-C.

2) Procedure: The ultimate objective of our framework
is to generate high-quality pseudo-labels that can effectively
fine-tune and enhance downstream gesture recognition mod-
els. To evaluate the efficacy of our pipeline, we measure the
performance improvement achieved by fine-tuning the initial
pre-trained gesture recognition model using our generated
pseudo-labels.

In the experiments, we create a subset of the training
dataset that initially contains complete labels. From this
subset, we remove the labels and leverage our framework to
generate pseudo-labels for this particular portion of the data.
The size of the remaining subset of labeled data becomes the



SHREC’2021 [3]

Online DHG [5]

Labeled Sequences ~ 40 ~ 80

~ 120 ~ 70 ~ 140 ~ 210

Baseline [43]
Our Annotation Framework

30.0 (A=22%)
26.0 (A=18%)

69.0 (A=11%)
73.0 (A=15%)

83.3 (A=6%)
88.3 (A=11%)

34.9 (A=25%)
28.9 (A=19%)

68.3 (A=10%)
75.3 (A=17%)

81.6 (A=5%)
89.6 (A=13%)

TABLE III: Evaluation of the effectiveness of the pseudo-labeled dataset produced from our proposed annotation framework.
The numbers indicate the gesture classification accuracy of the downstream gesture recognition model fine-tuned from the
pseudo-labeled dataset. The A indicates the accuracy improvement between the pre-trained accuracy and the fine-tuned
accuracy. The second row indicates the size of the labeled subset. These labeled sequences are used for pre-training the
downstream gesture recognition model and the annotation model. Please refer to Figure 1 for a detailed illustration of the
workflow of the annotation framework. Note that SHREC’2021 dataset has a total of 180 sequences, and Online DHG

dataset has a total of 280 sequences.

adjustable parameter in our experiments. Now, we have two
subsets, one labeled subset and one unlabeled subset. This
labeled subset is utilized for pre-training both the annotation
model and the downstream gesture recognition model, and
the unlabeled subset is utilized in the pseudo labeling-
based semi-supervised learning pipeline. Such a process is
demonstrated in Figure 1. We use one of the state-of-the-
art gesture recognition models, ST-GCN, from [3] as the
downstream gesture recognition model. The performance of
the framework directly impacts the quality of the pseudo-
labels produced from the annotation framework. The quality
of the pseudo-labels then impacts the improved accuracy and
final accuracy of the final downstream recognition model
which is fine-tuned from the pseudo-labels. This is explained
in Figure 1. We use gesture classification accuracy in Equa-
tion 3 to measure the accuracy of the downstream gesture
recognition model.

3) Results: The performance and improvements of the
fine-tuned downstream recognition model are summarized
in Table IIL. It is important to note that these results pertain
to the downstream model and are not directly comparable to
those in Table II.

Through the semi-supervised learning pipeline, both our
new annotation framework and the baseline framework
demonstrate significant improvements in the performance
of the downstream model, as indicated by the A values,
from 5% to 25%. The magnitude of improvement is directly
influenced by the size of the unlabeled dataset, with larger
datasets yielding greater improvements through this pipeline.

Furthermore, our evaluation results highlight that the
pseudo-labeled data generated by our framework generally
outperforms the pseudo-labeled data generated by the base-
line framework. The quality of the pseudo labels is reflected
in both the improved accuracy and the final accuracy of
the downstream model. It is noteworthy that the baseline
framework initially outperforms our new framework when
using a small set of labeled data. This can be attributed to the
higher number of trainable parameters in the output layer of
our annotation model, which employs a many2many design
and faces challenges in achieving convergence with the CTC
loss. However, as the size of the labeled set increases, our
new framework surpasses the baseline.

The superior performance of our framework can be at-

tributed to the annotation model’s ability to train on pseudo-
labeled data that may not be accurately segmented initially
in the semi-supervised learning loop (pipeline). This is in
contrast to the baseline framework, whose model heavily
relies on accurately segmented data when trained with CE
loss. These results highlight the potential of our annotation
model and the semi-supervised pipeline to significantly en-
hance downstream gesture recognition models, showcasing
the advantages of our approach.

VI. LIMITATION AND FUTURE WORK

It is important to acknowledge several limitations in our
work. Firstly, although our proposed model exhibits superior
performance in gesture data annotation for class labeling
and nucleus localization, we must acknowledge that the
training process of our new model is more time-consuming
compared to the baseline. While training efficiency is not
the primary focus since annotation can occur offline, there is
room for future improvement in this aspect. Furthermore,
our current framework still relies on the availability of
labeled data to initiate the process. We have not explored
a fully unsupervised version in this study, which presents an
intriguing avenue for future research.

VII. CONCLUSION

This paper presents a framework that enables accurate and
automated annotation of gesture data, encompassing gesture
classification and localization. The framework consists of
two key components: (1) a novel annotation model that
optimizes both gesture classification and localization con-
currently, and (2) a semi-supervised learning pipeline in-
corporating pseudo-labeling. The ablation study reveals that
this novel annotation model design surpasses the baseline
model, achieving a 4.3% higher class labeling accuracy and
a 71.4% improvement in nucleus localization accuracy on
the SHREC’2021 dataset (3.4% and 75.0% respectively on
the Online DHG dataset). Moreover, we also demonstrate
that the pseudo-labeled data generated by our framework
significantly enhances the performance of a pre-trained
downstream gesture recognition model through fine-tuning,
resulting in improvements ranging from 11% to 18% on the
SHREC’2021 and Online DHG datasets.
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