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Fig. 1: Sample test frames. Top row: low-resolution frames, bottom row: high-resolution counterparts obtained by our
proposed model. Keypoints are superimposed on each frame. All the keypoints are successfully captured in the enhanced
high-resolution frames.

Abstract— In this study, we present a novel methodology
that enhances hand keypoint extraction in low-resolution sign
language datasets, a challenge that has been largely unexplored
in sign language research. By addressing the limitations of
existing pose extraction models like OpenPose and MediaPipe,
which frequently struggle with accurately detecting hand key-
points in low-resolution footage, our method marks a notable
advancement in this specialized field. Our methodology adapts
the U-Net and Attention U-Net architectures to improve the res-
olution of sign language videos while reducing undetected hand
presence (UHP) in low-resolution footage. The key innovation
focuses on hand movements through a progressive training pro-
cedure, utilizing datasets from SRF DSGS and ShowTV Main
News domains. Through comprehensive experimentation and
cross-dataset evaluations, our findings demonstrate a significant
reduction in the UHP ratio, notably in the Attention U-Net
model with our proposed loss function, tailored to enhance
hand keypoints detection. In our benchmark tests, using low-
resolution TV news broadcasts, our fine-tuned models, partic-
ularly the BWA-UNet, showed marked improvements in hand
keypoint accuracy compared to standard upsampling methods.
These results underscore the effectiveness of our approach
in practical, real-world scenarios, highlighting its potential to
substantially improve hand keypoint detection in sign language
videos.

I. INTRODUCTION

In the key sign language domain tasks, such as sign
language production and recognition, there is a preference
for utilizing pose sequences rather than the images directly
[1], [2], [3], [4], [5]. In these contexts, the accurate extrac-
tion of hand keypoints is essentially important for effective
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communication and interpretation. The manual annotation of
keypoints is neither a preferred nor a cost-effective method
in the field of sign language. Consequently, pose estimation
models are used to generate ground truth and train the models
in sign language studies. Despite rapid advancements in this
field and the availability of models capable of producing
satisfactory outcomes, there remains a significant challenge
in achieving accurate hand pose estimation. Current studies
in this area often fall short in this regard, highlighting a gap
in the field that needs addressing.

Recently published continuous sign language datasets, like
Content4All [6] and SRF DSGS Daily News Broadcast [7],
make it easier to accurately extract hand keypoints thanks to
their high-resolution. However, the practicality of collecting
such datasets is limited due to the high costs associated
with acquiring a sufficient variety of samples for different
sign languages. This challenge is particularly evident when
training advanced deep learning models, such as those based
on transformers, which require extensive datasets for each
distinct sign language. This highlights the need for more
accessible and cost-effective data sources. In this context,
low-resolution sign language content, commonly found in
TV news broadcasts, emerges as an underexploited yet abun-
dant resource. Leveraging this readily available data could
significantly enhance the generation of continuous datasets in
sign language research, offering a scalable and cost-effective
alternative to their high-resolution counterparts.

However, the utilization of low-resolution videos from
sources such as TV broadcasts introduces unique challenges
for keypoint extraction. Although existing works in the
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super-resolution domain, like the ones proposed by Ledig et
al.[8], Lim et al. [9], Chen et al. [10], Zamfir et al. [11]
have made significant strides in increasing image resolu-
tion, merely enhancing resolution does not directly address
the challenge of accurate hand keypoint detection in sign
language videos. Motion blur and other related artifacts
often persist in the upsampled versions, rendering widely
used off-the-shelf pose detectors, such as OpenPose [12]
and MediaPipe Holistic [13], ineffective for hand keypoints
identification. Our research confronts this issue by focusing
on removing such artifacts while increasing the resolution of
videos. This approach is pivotal in bridging the gap between
enhanced resolution and the effectiveness of pose detectors
in interpreting sign language from low-resolution sources.

Our study also contributes to the assessment of model
performance. We focus on reducing motion blur and other
quality-degrading factors to enable existing pose detectors to
accurately capture all hand joints. To validate our approach,
we employ a dual evaluation strategy: assessing performance
within the existing high quality dataset’s test set that we
created for our purposes and utilizing a benchmark test set
that we derived from low-resolution TV news broadcasts.
This, so called ’in the wild’ evaluation is a novel aspect
of our research, as there is no known precedent in the
literature for such an assessment approach. Utilizing datasets
such as SRF DSGS Daily News Broadcast, which provide
extensive, continuous, high-quality sign language content,
as the initial resources in our approach, our objective is to
improve the utility of data in scenarios where traditional pose
estimation models fail. To achieve this, we have adapted
the U-Net architecture [14], known for its effectiveness in
super-resolution tasks, introducing an additional upsampling
block to increase the resolution of low-resolution images
by a factor of two. This study is particularly crucial given
the limitations of manual annotation and the reliance on
pose estimation models for generating ground truth in sign
language studies. We specifically target the enhancement
of hand keypoint extraction, acknowledging the difficulties
posed by motion blur and other quality-degrading factors in
low-resolution videos.

In this context, we also explored various loss functions,
moving beyond the traditional Mean Square Error (MSE) ap-
proach, which often leads to a loss of high-frequency details
and edge blurring in upsampled images. This exploration
aims to enhance the recovery of failed detections of hand
keypoints from low-resolution videos. We further validate
our model’s efficacy and generalizability through cross-
dataset evaluations using data from ShowTV Main News, a
daily broadcast in Turkey. This dataset is particularly relevant
for our study, given its low-resolution and motion-blurred
content, typical of publicly available sign language videos.
Our approach not only addresses the technical challenges
of enhancing low-resolution videos for precise keypoint
extraction but also underscores the importance of optimizing
time and resource allocation in sign language research,
demonstrating the potential to significantly advance the field.
This advancement is not only academically significant but

also holds immense potential for real-world applications,
especially in diversifying the data sources for sign language
research globally.

II. RELATED WORK

A. Dataset

In the field of sign language research, a diverse array of
datasets is available, each with its own unique advantages and
limitations. Predominantly, the field features isolated sign
language datasets, such as those referenced in [15], [16],
[17], [18]. These datasets typically comprise recordings that
represent a sign along with its spoken language translation.
However, our research is centered on continuous sign lan-
guage, rendering many high-quality isolated datasets, despite
their merits, unsuitable for our specific focus.

The domain of continuous sign language is characterized
by a relatively limited number of large-scale datasets that
offer broad, non-isolated contexts. A notable example is
the Content4All dataset by Camgöz et al. (2021), which
encompasses six datasets with a total of 190 hours of video
footage, primarily in the news domain. Of these, 20 hours
of video with a resolution of 1280x720 pixels have been
annotated and made publicly available for research. Another
significant dataset is the SRF DSGS Daily News Broadcast,
covering daily news from 2014 to 2021 with 30-minute
episodes. The dataset for the year 2020 alone includes ap-
proximately 60 hours of video footage across 119 episodes,
all in 1280x720 resolution. This dataset was notably used in
the WMT Shared Task on Sign Language Translation (WMT-
SLT22), with the participating teams’ experiments and results
shared publicly [19]. Given its accessibility, relevance, and
recent publication, we have selected this dataset as a primary
resource for our study.

Regarding Turkish sign language, there are a few datasets
available, but they predominantly consist of isolated sign
images [15], [16]. Given our focus on continuous sign
language, these datasets do not align with our research
objectives. Consequently, we explored publicly available
resources and realized the absence of a readily usable dataset
in this domain. In attempting to create and utilize our dataset,
we encountered challenges with low-resolution and motion
blur, which significantly hindered hand detection by pose
estimation models. This realization forms the cornerstone of
our research, highlighting the need for improved methods to
utilize such low-resolution, motion-blurred data effectively.

B. Pose Estimation

Pose estimation is a critical area in computer vision,
encompassing a variety of methodologies such as sequential
prediction, convolutional architectures, hierarchical models,
non-tree models, and classical approaches [20]. Contempo-
rary state-of-the-art research predominantly employs models
based on Convolutional Neural Networks (CNN).

A notable example is the DeepPose architecture [21],
which utilizes a multi-stage model. Initially, pose estimation
is conducted using a DNN-based regression, akin to AlexNet.
The outputs of this stage are further refined through a



subsequent CNN structure, enhancing the accuracy of the
pose estimation.

Another significant approach is embodied by Convolu-
tional Pose Machines [20], a multi-stage system that gener-
ates belief maps from the original image in its initial phase.
These belief maps, coupled with the original image and an
expanding effective receptive field, undergo refinement in
subsequent stages, progressively improving the accuracy of
the pose estimation.

Earlier studies in pose estimation focused predominantly
on single-person scenarios. However, the introduction of part
affinity fields [22], a nonparametric representation, marked
a significant advancement in multi-person pose estimation.
This approach facilitates the association of individual body
parts with their corresponding entities in the image. The
multi-stage algorithm employed in this study generates a
part confidence map, enabling the extraction of body parts
without person-specific references. Furthermore, it allows
for the effective association of these body parts using part
affinity fields.

OpenPose[12] represents a further evolution in multi-
person pose estimation, utilizing part affinity fields to per-
form real-time estimation for multiple individuals. Unlike
previous models, OpenPose focuses on refining only the part
affinity field throughout its training process. It has become a
popular choice for sign language tasks due to its efficiency
and accuracy.

MediaPipe Holistic [13] is another multi-stage model ex-
tensively used in sign language tasks. It begins by estimating
the human pose, followed by generating three distinct crops
of interest: two for the hands and one for the face. To enhance
the Region of Interest (ROI), a re-crop model is used. This
model first extracts the keypoints of the hands and faces
using separate, dedicated models before merging them for a
comprehensive pose estimation.

Despite the advancements in pose estimation models,
challenges persist, particularly in scenarios involving low-
resolution and motion-blurred images, where hand detection
becomes problematic. This issue is crucial in sign language
research, yet it remains inadequately addressed. Camgoz
et al. [23] acknowledged this problem, but their study did
not propose a solution. Our research aims to address this
gap by developing methods to reduce the loss of hand
detection accuracy in low-resolution and motion-blurred im-
ages, particularly focusing on enhancing the performance of
MediaPipe Holistic in such challenging conditions.

C. Super Resolution

The field of super resolution, particularly for single-
image enhancement, began with the utilization of traditional
techniques like Lanczos resampling [24], bicubic interpola-
tion, and linear filters. While these methods marked initial
progress, they often fell short of accurately transferring high-
frequency components, leading to suboptimal results. With
the advancement of computational techniques, the focus
shifted towards more sophisticated methods. Recent studies
have demonstrated the effectiveness of CNN-based models,

notably the U-Net architecture [25], [26], [27], which has
gained prominence due to its proficiency in producing high-
quality results, even with limited data.

In the broader scope of computer vision, Generative
Adversarial Networks (GANs) have emerged as a powerful
tool. A GAN comprises two interconnected networks: the
generator, which creates plausible data, and the discriminator,
which differentiates between real and generated data. This
architecture has been successfully applied in super resolution
research, with several studies leveraging GAN models to
achieve impressive enhancements in image quality [28], [29],
[30].

Additionally, diffusion models, a newer class of generative
models, have gained traction in recent years. These models
offer an alternative approach to super resolution challenges
[31], [32], [33], with some evidence suggesting their poten-
tial to outperform GANs in certain applications [34].

Despite the advancements in these complex models, we
have chosen U-Net for its efficiency in achieving fast and
cost-effective outcomes. It demonstrates strong performance
even with limited training data and tends to converge more
quickly during training than other architectures. The U-Net
architecture, consists of two primary pathways: a contracting
path that captures contextual information through convolu-
tional and pooling operations, and an expansive path that
allows for precise localization via upsampling and convo-
lutional operations. Integral to its architecture are the skip
connections that bridge corresponding layers in the con-
tracting and expansive paths, merging high-level, semantic
information from the former with detailed spatial data from
the latter.

Several models based on U-Net have been developed for
super-resolution. For instance, Hu et al. (2019) introduced
a novel U-Net architecture (RUNet) designed to establish
correlations between degraded low-resolution (LR) images
and their high-resolution (HR) counterparts, incorporating
a dynamic degradation model during training for enhanced
single-image super-resolution [35]. Another notable adap-
tation is the Multi-Level U-Net network (MUN) proposed
by Han et al. (2022), which employs a multi-level U-Net
residual structure. This structure integrates two distinct U-
Net frameworks to extract multi-level features from low-
resolution (LR) images, offering improved image super-
resolution reconstruction [36]. Our choice of U-Net is driven
by its adaptability and effectiveness in handling the nuanced
requirements of enhancing low-resolution sign language
videos for precise keypoint extraction.

Attention U-Net [37] is another U-Net-based adaptation.
It employs attention gates to suppress irrelevant information
while emphasizing important features. Multiple datasets have
demonstrated increased accuracy as compared to the standard
U-Net. To improve the accuracy of hand detection in our
dataset, we employed Attention U-Net in addition to the
standard U-Net model.



D. Loss Functions

A diverse array of loss functions has been devised for
effective training in super-resolution modeling. Mean Ab-
solute Error (MAE) and Mean Squared Error (MSE) are
commonly used to reduce the discrepancy between predicted
and actual ground truth values. Studies have shown that
MAE can achieve lower loss values compared to MSE
[38]. However, when employed individually, MAE or MSE
may cause excessive smoothing or blurring in the super-
resolved images. To mitigate this, enhancements are often
incorporated into these loss functions, as relying solely on
either MAE or MSE is generally not preferred.

A critical challenge in super-resolution is the loss of high-
frequency components during the downsampling of images.
Preserving these components in the upsampled output is
essential. The Mean Squared Canny Error (MSCE) approach,
which computes MSE between the edges of the ground truth
and predicted images using the Canny edge detector, has
been proposed to address this issue [39].

In addition to these pixel-based loss functions, there are
perceptual losses that focus on the overall properties of an
image [40], [41]. One such metric is the Structural Similar-
ity Index (SSIM), which measures the structural similarity
between two images. In the context of super-resolution, em-
ploying SSIM loss encourages the generated high-resolution
image to maintain structural integrity in comparison to the
target high-resolution image [42].

Furthermore, to enhance overall model efficacy, weighted
loss functions are strategically designed [43]. To improve
our model’s accuracy in detecting hands, we implemented a
weighted loss function. This function is specifically designed
to focus more on important areas, ensuring that the model
pays extra attention to the hands. This approach becomes
even more effective when combined with super-resolution
techniques. It helps the model to concentrate better on hand
details, which enhances accuracy in detecting hands.

III. THE METHOD

A. Model Architecture

We utilize the U-Net architecture for our problem, char-
acterized by its distinct U-shaped structure (Fig. 2). This
architecture is divided into two primary components: the con-
tracting path, known as the encoder, and the expansive path,
referred to as the decoder. The contracting path resembles a
traditional CNN architecture with a series of convolutional
and max-pooling layers. These layers are responsible for
capturing and encoding the high-level features and context
of the input image. At the bottom of the U-shape, there is a
bottleneck layer that serves as a bridge between the encoder
and decoder. It captures the most essential features, acting as
a bottleneck to reduce spatial dimensions. The expansive path
is the mirror image of the contracting path and is composed
of up-sampling and concatenation operations. Up-sampling
is used to restore the spatial resolution of the feature maps.
Concatenation combines feature maps from the contracting
path with those from the up-sampled layers, allowing the

model to leverage both high-level context and detailed spatial
information. The final layer involves an additional upsam-
pling layer to further increase the spatial resolution two times
in each dimension and a convolutional layer with a 1x1
kernel, which reduces the number of channels to match the
desired number of channels for the output image.

In our method, we improved the basic U-Net design
by adding attention blocks to our architecture, which is
depicted in (Fig. 3). Similar to the Attention U-Net archi-
tecture [37], we integrated attention blocks at points where
encoder skip connections meet the decoder. These blocks
filter the the encoder feature maps, using a gating signal
from the decoder’s current layer that incorporates contextual
information from coarser levels. To do that, attention blocks
produce attention coefficients, which range between 0 and
1, incorporating coarse features from lower levels and input
features from higher levels. The result is a filtered feature
map that highlights key features while suppressing the less
relevant background. This map is then merged with the
decoder’s upsampled output, sharpening the model’s focus
on critical regions.

Fig. 2: U-Net architecture

Fig. 3: Block diagram of the Attention Block [37]. It is
located at every skip connection, where encoder feature
meets the decoder.

B. Datasets

The creation of appropriate datasets was a fundamental as-
pect of our research, especially in the absence of existing data
tailored to our specific objectives. This section elaborates on
the extensive and critical process of dataset development,



which was both time-consuming and essential for our study.
We dedicated significant effort to collecting and organizing
data from primary sources, meticulously ensuring that these
datasets precisely met the requirements of our analysis. In
this section, we detail our methodical approach to selecting
and preparing these datasets, highlighting their pivotal role
in the validity and success of our research.

We have categorized our datasets into three distinct groups
within two domains, the base and target domains, to facil-
itate a structured approach to our analysis. The first group,
designated as D1, is from the base domain, comprising the
SRF DSGS dataset. This dataset features high-resolution
videos, which we have adapted to lower resolutions through a
controlled downsampling process. This process enables us to
precisely generate both input and target frames, providing a
robust foundation for initial model training and adjustments.

Within the target domain, we have divided our data into
two subsets from ShowTV Main News. The first subset,
referred to as TD1, is a smaller dataset carefully prepared for
fine-tuning purposes. This subset includes pairs of training
and target frames, allowing for precise model refinement.
The second subset within the target domain, labeled as TD2,
serves as our benchmark test set. This test set is crucial for
evaluating the model’s performance under various conditions
and is used exclusively for testing purposes.

The structuring of these datasets into base and target
domains, with distinct subsets for training, fine-tuning, and
testing, is aligned with our objective to assess model perfor-
mance from multiple perspectives and for diverse applica-
tions.

C. Base Dataset (SRF DSGS)

We selected episodes from the year 2020 of the SRF DSGS
Daily News Broadcast dataset as our base dataset in this
research. This dataset comprises around 60 hours of video
footage, each episode being 30 minutes long and presented in
1280x720@25fps. Notably, the footage exclusively features
signers, aligning with our specific requirements.

Given that an extensive amount of data is not essential
for training our architecture to enhance resolution, we have
strategically utilized 2.5 hours of these videos. We have
divided the videos into 1-minute video segments, resulting
in a dataset comprising 150 videos, each 1 minute long. Out
of these, 120 are allocated for training (i.e., 180,000 frames),
while the remaining 30 are for testing (i.e., 45,000 frames).

Additionally, we prepared inputs and ground truths for
training our models. To achieve this, we initially cropped
the original videos to dimensions of 517x571, ensuring the
signer is positioned at the center of the footage. Subse-
quently, we downsampled the videos to 304x336, aligning
with the requirement for inputs to be of size 152x168. This
size is necessary for this research, since the low-resolution
video frames that we collected from ShowTV Main News
have this resolution.

Since the video frames in SRF DSGS dataset are in high
quality, we process them to add motion blur to their low-
resolution versions. We want to get their distribution as close

to the target domain dataset (ShowTV Main News’) low
resolution data as possible; to enhance the model’s ability
to handle real-world low-resolution scenarios. To implement
this, we used the capabilities of DaVinci Resolve, a profes-
sional video editing and color correction software developed
by Blackmagic Design. Leveraging this tool, we seamlessly
applied artificial motion blur to our videos, carefully adjust-
ing the scale for visual authenticity. Our method involved an
initial application of optical flow, followed by the nuanced
integration of motion blur across all videos, precisely set at
a scale of 3. Example frames can be seen in Fig. 4. The
images on the top row show the input images, which are
low resolution and processed versions of the original frames,
while the bottom row shows the corresponding target images
(2 times higher resolution than inputs) used as in the original
dataset.

Fig. 4: Examples from the SRF DSGS dataset. Top row:
low resolution processed frames (inputs), bottom row: high
resolution frames (ground truths).

D. Target Datasets (ShowTV Main News)

A subset of the ShowTV Main News episodes [44],
[45], [46], [47] present a unique opportunity due to their
stable background and the scarcity of high-resolution data.
We utilized a small, carefully selected subset of this data
as a benchmark for fine-tuning our models (i.e., 62,000
frames). We will refer to this subset as TD1. This fine-
tuning process involved choosing episodes with a consistent
black background and processing both low-resolution (720p)
and high-resolution (1080p) footage from these episodes to
generate appropriate inputs and targets (i.e., ground truths).
Exemplary frames from this dataset are depicted in Fig. 5.

In addition to the first target set (TD1), which contains
input and their ground truths, we created another dataset,
namely (TD2) for cross-dataset evaluations of our model
from the low-resolution episodes of ShowTV Main News
broadcasts, where high-resolution footage was not available
in our collected data. Given the realistic nature of this dataset,
we do not have access to ground truth data for hand keypoint
positions. Therefore, the effectiveness of our models is
assessed uniquely by counting the number of frames in which
the pose estimation models are able to accurately detect hand
keypoints. We will refer to this dataset as Benchmark Test



Set. This approach is critical in our evaluation, as it offers a
practical measure of the models’ performance in enhancing
hand pose estimation, especially in the absence of ground
truth benchmarks in these real-world data scenarios.

Fig. 5: Fine-tuning data samples from the ShowTV Main
News. Top row: low-resolution frames, bottom row: high-
resolution frames.

E. Loss Functions

1) SSIM+L1 Loss: In our research, we employed the U-
Net model, experimenting with various loss functions to
optimize its performance. Specifically, we tested the L1 and
L2 loss functions, both individually and in combination with
the SSIM loss. Our findings indicated that the L1+SSIM loss
configuration yielded the most effective results.

The integration of SSIM with the L1 loss function is
particularly advantageous as it targets two critical aspects
of image quality. The L1 component focuses on pixel-wise
accuracy, ensuring that each pixel in the output closely
matches its counterpart in the target image. Meanwhile,
SSIM contributes to the perceptual quality of the images,
assessing and enhancing the visual similarity between the
output and the target. This combination is beneficial because
SSIM is inherently less sensitive to minor local distortions.
As a result, the combined loss function offers enhanced
robustness, effectively handling structural variations in the
images. Given these advantages, we adopted the L1+SSIM
loss configuration for both the U-Net and the Attention U-
Net models in our study.

2) Weighted Loss (WL): Our study focused on enhancing
the resolution of input images, specifically targeting the hand
regions where detail is often lost due to low resolution and
motion-related distortions. While the SSIM+L1 loss function
showed promising results for general upsampling, it proved
inadequate for refining the hand areas. To address this, we
developed a novel loss function, termed weighted loss, which
emphasizes the hand regions.

This weighted loss function operates by scaling the loss
values based on their alignment with a generated map.
Utilizing pose information, particularly around the wrist
joints of each hand, we generate circular masks centered
on these joints. These masks correspond to areas in the
generated weight map, which is the same size as the input
image, as illustrated in Fig. 6. Within these circular masks,

the loss is given twice the weight compared to areas outside
the masks.

During the optimization process, the loss for each pixel is
adjusted according to its corresponding weight in the map.
By doing so, our method ensures more focused attention
and improved detail enhancement in the hand regions of the
images.

Fig. 6: Hand masks are superimposed on selected frames
from sign language videos. These masks are crucial for the
weighted loss calculations, emphasizing the hand regions to
enhance detail and accuracy in the model’s output.

IV. EXPERIMENTS

A. Training Procedure

The training of our models was conducted on a computer
equipped with an Nvidia RTX A4000 GPU, utilizing Pytorch
framework. We consistently used the Adam optimizer with
its default parameters, setting the learning rate at 0.001.
Each training session was configured to run for 50 epochs,
but we incorporated an early termination feature: if the
validation loss did not improve for 7 consecutive epochs,
the training was automatically halted.

We have a progressive training procedure with the
following stages:

Initial training: In this stage, we train models using the
Base Dataset (D1) and then evaluate their performance on
both D1 and the benchmark dataset (TD2). We removed
the skip connections from the U-Net architecture and
transformed it into an autoencoder model referred to as
B-AE in order to investigate how the skip connections in the
U-Net model improve performance. After that, the standard
U-Net and Attention U-Net architectures are employed,
utilizing SSIM+L1 loss on D1, resulting in the B-UNet
and BA-UNet models, respectively. Both models undergo
evaluation using the test sets of D1 and TD2, facilitating
both within-domain and cross-domain assessments. Here,
the BA-UNet model exhibited higher performance.

Model Enhancement with Weighted Loss: Building on
the results of initial training, we introduced another model,
trained using D1 with our proposed Weighted Loss (WL) in
the Attention U-Net architecture, creating the BWA-UNet
model. This model incorporates a weighted SSIM+L1
loss, with double weight assigned to the hand region. The



BWA-UNet showed superior performance on the TD2.

Fine-Tuning with Target Dataset: In this stage, the best-
performing model from the earlier stages is fine-tuned using
the TD1 dataset. We denote this model as BWFA-UNet. This
model is also evaluated against TD2 to assess improvements.

B. Evaluation Procedure

Our evaluation procedure is designed to assess model
performance through a video-based approach, contrasting
the frame-by-frame analysis during the training phase. Dur-
ing testing, we process each frame of the test dataset
videos, each lasting one minute and comprising approxi-
mately 1500 frames. The models are provided with these
frames, and the resulting outputs are then composed into
one-minute video segments. These segments are fed into
Mediapipe for pose extraction. Mediapipe Holistic model
is used with the parameters, min detection confidence=0.3,
min tracking confidence=0.3.

The key metric for our evaluation focuses on the detection
accuracy of the dominant hand (the right hand in our
datasets). We utilize an automated process to extract data
from frames where the dominant hand is not successfully
identified by the model. This data enables us to calculate the
ratio of frames with undetected hand presence (UHP) to the
total frame count. The average ratio derived from various
test videos serves as the primary measure for assessing the
efficacy of our model for consistent hand pose detection
across continuous video footage.

Additionally, we consider key metrics: Peak Signal-to-
Noise Ratio (PSNR) measures the quality of the recon-
structed image; Structural Similarity Index (SSIM) evalu-
ates similarity between original and reconstructed images;
Perceptual Hashing (pHash) generates a compact image
representation with a 64-bit hash value; Hamming distance
measures similarity between two images based on differing
bits; Fréchet Inception Distance (FID) quantifies similarity
between the distributions of real and generated images,
assessing quality and diversity.

C. Results and Discussion

In order to assess our models, we first generated upsam-
pled videos using standart upsampling function with bilinear
interpolation. Following our training procedure, we trained
the baseline models that we planned for the initial stage,
namely B-UNet, BA-UNet and BWA-UNet on base dataset
(D1). The performances are depicted in Table I.

Before going into the details of the models, let us explain
the average UHP Frame numbers and their ratios for the input
videos and the target (2x size) videos in the D1 dataset; in
33.13% of the input videos, the dominant hand cannot be
identified by the Mediapipe. On the other hand, in the target
videos (ground truths), only 2.47% are lost. This shows that
the prepared dataset could be effectively utilized for training
a deep model to reduce UHP.

The UHP ratio of the standard bilinear upsampling algo-
rithm is worse than the UHP ratio of the original input videos

(by around 2.97%). This outcome clearly demonstrates that
simply upscaling inputs using conventional methods is inad-
equate for maintaining, let alone enhancing, hand detection
accuracy. It underscores the importance of developing a
learned approach to upsampling that is specifically tailored to
preserve and accentuate critical features, such as hand poses,
in the upscaled output. This is essential for ensuring that key
details are not lost or distorted in the process of increasing
resolution.

Among our baseline models, the BWA-UNet emerges
as the top performer, notably enhancing the UHP ratio
compared to the original input videos. Specifically, the BWA-
UNet reduces the number of frames with lost hand keypoints
from 497 to 99, translating to a significant decrease in loss
to 6.60%. When comparing B-AE with B-UNet, B-UNet
demonstrated a 0.27% enhancement over D1 and a 1.13%
improvement over TD2. This demonstrates that incorporating
skip connections into a model improves its performance.
However, when compared to the BA-UNet model (Attention
U-Net without weighted loss), the improvement is marginal.
This observation suggests that the addition of weighted
loss to the Attention U-Net model results in only a slight
performance advantage in recovering hand keypoints from
low-resolution videos. The performance of BWA-UNet and
BA-UNet is notably similar, indicating that the weighted loss
does not significantly enhance the model’s effectiveness as
initially expected. Sample results of the BWA-Unet model
are shared in Fig. 7.

BWA-UNet also outperformed other models based on
several performance metrics except FID score where BA-
UNet performed slightly better than BWA-UNet. A higher
Peak Signal-to-Noise Ratio (PSNR) number implies a lower
level of distortion or noise. Similarly, when comparing the
structural similarity of two images using the Structural Sim-
ilarity Index (SSIM), a higher value implies a greater degree
of similarity. A phash value near 0 implies a significant
amount of similarity between the images. Consistent with the
results we obtained according to the UHP ratio metric, BWA-
UNet produced more successful results in these metrics.
Upon examining the results, it is noticeable that bilinear
interpolation is not effective. Nevertheless, it can be stated
that UNet models produce very similar results.

Given our objective of reducing the occurrence of un-
detected hands in frames, we cannot solely rely on visual
enhancements when utilizing pose estimation models. There-
fore, while performance metrics like SSIM, PSNR, and phash
indicate an improvement in quality, they do not offer specific
insights into eliminating the occurrence of undetected hands.
Therefore, the UHP ratio is an essential metric for us.

After evaluating our baseline models, we proceeded to
conduct cross-dataset evaluations to further assess model
performance. This involved using the base models initially
trained on D1, and then evaluating them both with and
without fine-tuning on TD1, against TD2 (our benchmark
test dataset). Sample frames from TD2 are depicted in
Fig. 1, together with the results we obtained with our best
performing model (i.e., BWFA-UNet). UHP ratios on TD2



TABLE I: Evaluation Results in the D1 (SRF DSGS) Test Set

Model Loss UHP-Frame# UHP-Ratio(%) PSNR SSIM pHash FID

Input Videos - 497 33.13 - - - 451.786
Target Videos - 37 2.47 - - - -
2x Bilinear Interpolation - 540 36.00 29.33 0.891 0.752 467.083
B-AE SSIM+L1 110 7.33 33.893 0.948 0.831 64.202
B-UNet SSIM+L1 106 7.06 34.588 0.951 0.574 53.633
BA-UNet SSIM+L1 100 6.67 34.576 0.952 0.571 49.884
BWA-UNet WL 99 6.60 34.610 0.953 0.536 50.539

TABLE II: Evaluation Results in the TD2 (ShowTV) Test Set

Model Loss UHP-Frame# UHP-Ratio(%)

Input Videos - 390 26.00
2x Bilinear Interpolation - 401 26.73
B-AE SSIM+L1 369 24.6
B-UNet SSIM+L1 352 23.47
BA-UNet SSIM+L1 338 22.53
BWA-UNet WL 330 22.00
BWFA-UNet WL 313 20.87

Fig. 7: Detected Mediapipe keypoints; top row: sample inputs
of the D1 test set, bottom row: corresponding BWA-UNet
model outputs.

for pre-trained and fine-tuned models are presented in Table
II.

As is seen from Table II, without any fine-tuning, the
best performing model is again the BWA-UNet model. We
selected this pretrained model (on D1) and fine-tuned it
using TD1 (ShowTV dataset with target images) to observe
the improvements of this adaptation to the related domain
(from SRF DSGS to ShowTV Main News). Fine-tuning helps
improving the results by around 1.13%; the fine-tuned BWA-
UNet model exhibited better performance than the other
models. This was particularly evident in the cross-dataset
evaluations, highlighting the effectiveness of the BWA-UNet
model when fine-tuned with TD1, in accurately performing
on TD2. The enhancement degree is evident in the sample
frames’ hand keypoints in Fig. 1.

V. CONCLUSION AND FUTURE WORKS

Our goal was to improve the resolution of low-resolution
sign language data, facilitating better hand detection by

Mediapipe Holistic in frames where it initially failed. To this
end, we integrated an additional upsampling layer into the
U-Net architecture, aiming to enhance frame resolution and
visual quality. We trained the standard U-Net model, first
without attention blocks, and explored a mix of traditional
loss functions and the Structural Similarity Index (SSIM) for
optimal results. Our initial findings indicated a reduction in
failed hand detection in the base dataset, but there was room
for further improvement.

To advance our approach, we enhanced the standard U-
Net with attention blocks and implemented a weighted loss
strategy, prioritizing the hand regions in the images, resulting
in the BWA-UNet model. This model nearly reached the
minimum ratio of failed hand detections in the base dataset.
However, its performance on the TD2 dataset was not as
effective, likely due to the differences in data distribution
between the two datasets. To improve its generalization
capability, we fine-tuned the BWA-UNet model using the
TD1 dataset, leading to the development of the BWFA-UNet
model, which showed improved performance on the TD2
dataset.

This study represents an initial direction in the field of
sign language video processing, particularly in enhancing
keypoint detection in low-resolution frames. The advance-
ments demonstrated in our work hold significant potential for
the creation of high-quality datasets, especially in scenarios
with limited resources. This aspect is crucial, as it paves
the way for more accessible and cost-effective methods in
dataset generation, enabling broader research and application
opportunities in sign language recognition and analysis with
minimal financial constraints. The promising results achieved
in this study suggest ample scope for further refinement and
innovation in this domain, potentially leading to substantial
improvements in the accuracy and reliability of keypoint
detection in low-resolution sign language videos.
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