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Abstract— In the realm of dyadic interactions, the ability to
generate appropriate facial reactions is paramount for the con-
veyance of empathy and understanding. This paper introduces
a novel framework that leverages the strengths of a diffusion
model architecture, underpinned by a vector quantized vari-
ational autoencoder (VQ-VAE) to synthesize facial reactions
that are contextually apt. We rigorously evaluate our model
on the IEEE FG REACT2024 dataset, where it demonstrates
superior performance, outshining baseline methods in terms
of effectiveness. The results underscore the potential of our
framework to enhance the fidelity of digital human interactions,
paving the way for more nuanced and emotionally intelligent
systems.

I. INTRODUCTION

Dyadic interactions, the fundamental units of human com-
munication, involve two individuals engaged in a reciprocal
exchange. These interactions can be richly informative, en-
compassing both verbal dialogue and a myriad of non-verbal
cues such as facial expressions, gestures, and body postures.
The study of dyadic interactions has garnered increasing
attention, with research aiming to decode and replicate the
nuanced dynamics of these exchanges. Previous studies [5,
6, 12, 14, 21] focused on generating reactions that mirror
a ground-truth response, often through deterministic models
that replicate exact reactions.

The challenge lies in capturing the spontaneity and diver-
sity of human responses, which are not always predictable
or uniform. As such, the field is moving towards models
that not only reproduce but also anticipate the complex
array of potential reactions, contributing to more realistic and
empathetic human-computer interaction. The REACT2023
challenge [17] delved into this evolving landscape, focused
on generating human-compatible facial responses across a
range of dyadic interaction situations, ensuring that all partic-
ipants are evaluated under identical conditions. The challenge
proposed two sub-challenges: Offline Multiple Appropriate
Facial Reaction Generation and Online Multiple Appropriate
Facial Reaction Generation, respectively.

As highlighted in the referenced study [15], participants
utilize a combination of verbal and non-verbal cues in dyadic
communications. This interaction allows for a broad spec-
trum of potential responses that are considered appropriate
for a listener to produce, contingent upon their psychological
disposition. For investigating the one-to-many appropriate
reaction mappings, Evonne Ng et al. [9] have been con-
ducted to synthesize multiple listener facial motions with

the given speaker’s behavior with a novel encoding VQ-VAE.
UniFaRN [7] utilizes the Transformer architecture to address
challenges, capitalizing on its versatility in processing multi-
modal data and its capacity to steer the generation process.
BEAMER [4] worked on a Transformer-VAE architecture,
they proposed a behavioral encoder that takes as input a
speaker’s behavior and texture and later encodes it into a
latent space of an appropriate listener. A recent approach
by Jun et al. [20] worked on the latent diffusion model
with modification to enhance the competency of modeling
the context. The inherent property of stochasticity in the
diffusion model enables their model to generate multiple
reactions.

This paper presents a vector quantized diffusion model
(VQ-Diff) to tackle the REACT2024 challenge [16], which
is based on recent work by Barquero et al. [1]. We employed
a Vector Quantized Variational autoencoder model (VQ-
VAE) [18] that learns listener reactions from a discrete latent
space and leveraged Latent Diffusion Model [11] with DDIM
sampler to predict the lower-dimensional representation of
the listener’s appropriate facial reaction from the speaker’s
reaction as input.

To summarize, our contribution includes:

• We utilize the Latent Diffusion Model (LDM) to gen-
erate appropriate facial reaction of the listener. Com-
pared to REACT2024 baseline methods, our approach
archives significant results in terms of diversity metrics
while maintaining decent effectiveness in terms of ap-
propriateness evaluation.

• We employed a VQ-VAE as an auxiliary model to learn
listener reaction features (e.g., AUs, facial affects, and
expressions) from a discrete latent space instead of
continuous distribution by the vanilla VAE model.

II. METHOD

We proposed the vector quantized diffusion (VQ-Diff)
model for Multiple Appropriate Facial reaction generation.
Our approach utilizes a vector quantized variation autoen-
coder (VQ-VAE), whose latent space is modeled by a Latent
Diffusion Model (LDM). In this part, we outline the prob-
lem statement and related concepts followed by a concise
overview of our model.

979-8-3503-9494-8/24/$31.00 ©2024 IEEE



Fig. 1. Offline MAFRG (left) aims to gradually generate facial reactions
and Online MAFRG (right) is the same as offline, but speaker behavior
must be shifted by the window size to only use past information.

A. Problem Statement

The REACT2024 challenge introduced two separate sub-
challenges designed for online and offline appropriate facial
reaction generation. Assume T is the time size and w is
the size of the segmented window. The task Offline Multiple
Appropriate Facial Reaction Generation (MAFRG) by the
Belfusion baseline [1] aims to gradually generate facial
reaction frames by a window-based approach where the
T/w reactions are predicted independently. Subsequently, the
reactions spanning w-frames, denoted as T/w, are sequenced
to form the entire reaction sequence. Following the method-
ology outlined in the referenced study [3] for the online sub-
challenge (online MAFRG), the visual features of the listener
within the interval [t, t + w] are predicted on the preceding
features of the speaker from the interval [t − w, t]. For the
initial segment [0, w], all features are initialized to zero. In
the context of the offline sub-challenge (offline MAFRG), the
reaction generation is contingent upon the speaker’s features
during the concurrent interval [t, t + w]. As shown in Fig.
1, our approach aligns with the Belfusion baseline, offline
MAFRG tends to predict the listener’s reaction to the current
speaker’s behavior while online MAFRG takes past speaker’s
behavior to generate future listener’s reaction.

B. Model architechture

Our approach method includes two stages which are
trained separately. In the first stage, we train a VQ-VAE with
two LSTM [3] based layers at the encoder and encoder to
learn a codebook with discrete listener’s reaction embeddings
space, as shown in Fig. 2. The model aims to learn a
lower representation of the listener’s visual features (e.g.,
AUs, facial affects, and expressions) of w frames. For the
prior distribution p(z), we define a vector quantized layer
following[18], we choose dimensions D=128 and K=200
for the size of discrete latent space. The encoder takes the
input and gives the latent embedded variables ze which
are calculated as the nearest neighbor look-up based on
L2 distance to select zq from the codebook. Afterward, the
decoder consumes zq and recreates the lower representation
of the listener’s visual features. We also incorporate a re-
gressor after the decoder to convert the decoded reaction to a
sequence of 3D Morphable Model (3DMM) parameters. VQ-
VAE loss is composed of three components: reconstruction
loss which optimizes the encoder and decoder; codebook
loss to bypass the embedding as the codebook learning by
L2 error; and commitment loss to make sure the encoder

commits to an embedding. The total loss is defined as
follows:

L = log p (x | zq(x))+∥sg [ze(x)]− e∥22+β ∥ze(x)− sg[e]∥22
(1)

Where sg represents the stop gradient operator meaning
no gradient, β denotes the commitment loss hyper-parameter
equal to 0.25 as mentioned in the paper.

In the second stage, a latent diffusion model is addressed
to predict the corresponding embedded variables z0 from
given the lower representation of the speaker’s visual fea-
tures. We first reuse the encoder from the VQ-VAE model
to transform the listener’s reaction to z0 and the speaker’s
reactions to condition c for LDM. The process involves
the initial latent variable z0 undergoing a forward Markov
chain progression over M steps, resulting in zM , which
approximates a normal distribution N (0, 1). During the
model’s training, the network is tasked with estimating zt−1

from zt, the timestep t, and the given context c, effectively
reversing the Markov chain using the DDIM sampler across
the designated M=10 steps (Fig. 3). Once we have predicted
latent variables z0 at the inference process, listener’s reaction
and predicted sequence of 3DMM coefficients can be recon-
structed by using the decoder from the first stage (Fig. 4)
which can first retrieve the closest neighbor for variable zq .
The loss function is calculated as the mean of Mean Square
Error (MSE) in the latent space and MSE in the reconstructed
space.

III. EXPERIMENTS

A. Datasets

To evaluate our proposed model, we conduct experiments
on the REACT2024 dataset, which employs two video con-
ference corpora: NoXi [2] and RECOLA [10]. It consists of
5910 clips of 30 seconds each, about 71,8 hours of dyadic
videos in total. The dataset also provided a comprehensive
set of 25 facial attributes for each frame. These include
the occurrences of 15 Action Units (AUs) - specifically
AU1, AU2, AU4, AU6, AU7, AU9, AU10, AU12, AU14,
AU15, AU17, AU23, AU24, AU25, and AU26. These AUs
are forecasted using the advanced GraphAU model [13] and
[8]. Additionally, two measures of facial affect valence and
arousal intensities are supplied, along with the probabilities
of eight distinct facial expressions: Neutral, Happy, Sad,
Surprise, Fear, Disgust, Anger, and Contempt.

B. Evaluation Metrics

We adopt the evaluation methodology provided by [15].
There are four dimensions: appropriateness, diversity, syn-
chrony, and realism with several metrics. Appropriateness
is gauged by comparing the similarity between the gen-
erated facial reactions and the actual reactions observed.
This involves two metrics: FRDist (Dynamic Time Warping)
and FRCorr (Concordance Correlation Coefficient). Diversity
measures the variation in reactions both within a single frame
and across multiple frames. To quantify diversity, FRVar,



Fig. 2. We leverage a VQ-VAE model to reconstruct the lower represen-
tation of listener facial features. The model employs vector quantization to
produce discrete latent representations by a codebook.

Fig. 3. Latent diffusion model training process.

Fig. 4. Latent diffusion inference process.

FRDiv, and FRDvs are computed. Moreover, FRSyn (Time
Lagged Cross Correlation) for synchrony examines how well
the generated facial expressions align with the speaker’s
behavior. Additionally, the authenticity of the created facial
reaction videos is evaluated using the Frechet Inception Dis-
tance (FID), referred to as FRRea, which gauges the realism
of the videos by comparing them to genuine facial reactions.
These metrics collectively ensure that the generated reactions
are not only contextually appropriate but also exhibit a
natural variety and are in sync with the speaker’s behavior,
contributing to the overall realism of the interaction.

C. Implementation Details

All the experiments are conducted in PyTorch using a
single RTX 8000 GPU. The training process for our model
involves two distinct phases. Firstly, the VQ-VAE is trained
by 1000 epochs with batch size 32, the window size is set to
50, the learning rate is 1e-3 and the weight decay by 5e-4. We
adjust the same optimizer parameters in the second stage and
train the LDM for 200 epochs. The LDM finally leverages
the learnt decoder from pre-trained VQ-VAE which converts

predicted listener latent variables to the final listener reaction
features and a sequence of listener 3DMM coefficients. We
trained two LDM models which are different in the inference
process, we omit the vector quantized layer in the decoder
for the second model for experiments.

D. Results

Our method is evaluated against generative approaches
that are Transformer-based Variational autoencoder (Trans-
VAE), Belfusion, and Reversible Graph Neural Network
(REGNN) [19]. The experimental results are conducted on
the REACT2024 test set as shown in Table I and Table II.
Additionally, we consider both non-binarized and binarized
Action unit features (AUs) from the generated output in our
evaluations.

The results obtained by both baseline models show the
ability to generate facial reactions that align well with the
actual listener’s reaction observed. Especially in the offline
task evaluation, REGNN indicates the lowest FRDist and is
more synchronized with speaker behavior. In terms of appro-
priateness evaluation, our VQ-Diff may be less effective at
quantifying the nearest appropriate facial reaction by FRDist
metric, but it demonstrates a better resemblance to the ground
truth listener’s reaction by getting a much higher FRC than
all other baselines. In sharp contrast, our approach surpasses
all previous methods in three key diversity measures: FRDiv,
FRVar, and FRDvs. When it comes to synchrony, our VQ-
Diff non-binarize AUs version archives a decent good TLCC
value among other models.

Our ablation study lies in the comparison between with
and without the codebook layer in the listener’s reaction
decoder. The model without a vector quantized layer can lead
to more arbitrary reactions that break down the FRDist score
trading off with incredibly elevated diversity evaluations.
However, the model beats by a fair margin most baselines
in terms of FRCorr. This is an interesting insight that would
benefit from further exploration in the future.

IV. CONCLUSION

In this work, we present the VQ-Diff model, which
leverages both discrete learning and the denoise diffusion
model to address the Multiple Appropriate Facial Reaction
Generation challenges. Particularly, the model consists of
a VQ-VAE model which focuses on reconstructing the
listener’s reactions, and a Latent Diffusion model to learn
the lower representation of the listener’s reaction to a given
speaker’s behaviors. The listener’s outcome can be predicted
by the auxiliary VQ-VAE decoder afterward. Our approach
enables significantly the generation of diverse responses



TABLE I
OFFLINE FACIAL REACTION GENERATION RESULTS ACHIEVED ON THE TEST SET

Method
Appropriateness Diversity Synchrony

FRCorr (↑) FRDist (↓) FRDiv (↑) FRVar (↑) FRDvs (↑) FRSyn (↓)

Trans-VAE 0.03 92.81 0.0008 0.0002 0.0006 43.75

BeLFusion (k=1) 0.10 92.32 0.0068 0.0073 0.0094 44.94

BeLFusion (k=10) 0.12 91.60 0.0105 0.0082 0.0116 44.87

BeLFusion (k=10) + Binarized AUs 0.12 94.16 0.0360 0.0249 0.0384 49.00

REGNN 0.19 84.54 0.0007 0.0061 0.0342 41.35

Ours 0.30 91.65 0.0743 0.0348 0.0745 45.33

Ours + Binarized AUs 0.29 96.53 0.1455 0.0682 0.1461 49.00

Ours (w/o codebook) 0.30 115.02 0.3712 0.1738 0.3730 45.58

Ours (w/o codebook) + Binarized AUs 0.29 119.30 0.4907 0.2298 0.4922 47.19
Note: k is the number of denoise steps.

TABLE II
ONLINE FACIAL REACTION GENERATION RESULTS ACHIEVED ON THE TEST SET

Method
Appropriateness Diversity Synchrony

FRCorr (↑) FRDist (↓) FRDiv (↑) FRVar (↑) FRDvs (↑) FRSyn (↓)

Trans-VAE 0.07 90.31 0.0064 0.0012 0.0009 44.65

BeLFusion (k=1) 0.12 91.11 0.0083 0.0079 0.0103 45.17

BeLFusion (k=10) 0.12 91.45 0.0112 0.0082 0.0120 44.89

BeLFusion (k=10) + Binarized AUs 0.12 94.09 0.0379 0.0248 0.0397 49.00

Ours 0.30 91.86 0.0737 0.03463 0.07434 45.18

Ours + Binarized AUs 0.29 96.83 0.1486 0.0699 0.1499 49.00

Ours (w/o codebook) 0.30 115.72 0.3800 0.1778 0.3809 45.37

Ours (w/o codebook)+ Binarized AUs 0.29 118.62 0.4719 0.2208 0.4728 48.66

while preserving the appropriateness and synchrony of gener-
ated reactions within dyadic exchanges for the REACT2024
MAFRG challenge.
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