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Abstract—In dyadic interaction, listener reaction generation
can be treated as a one-to-many mapping problem since
multiple listener reactions can correspond to a given speaker
action. The existing methods have not modeled the diversity
of contextual factors well and fail to generate diverse appro-
priate listener reactions. In response, we introduce discrete
latent variables to tackle this one-to-many mapping problem.
We conducted experiments on the datasets provided by the
REACT2024 Challenge, and the results demonstrated that
our approach is capable of generating appropriate listening
reactions with higher diversity. Our method achieved first place
in the offline track and second in the online track.

[. INTRODUCTION

Dyadic interaction, characterized by one-to-one conversa-
tions, has a considerable role in human society. Two roles are
always involved in a single dyadic interaction: a speaker and
a listener. Research on listener behaviors is significantly less
prominent than speaker-centric generation, such as audio-
driven talking head generation. Generally, dyadic interaction
can be considered a one-to-many mapping problem, where
multiple appropriate listener reactions (e.g. facial expres-
sions) can correspond to a given speaker action[23].

In light of this, the REACT2023 challenge [21] first
formalized the Multiple Appropriate Reaction Generation
(MARG) problem and gained widespread attention. Follow-
ing the successful organization of that, the second REACT
Challenge [22] was proposed, focusing on generating mul-
tiple appropriate, diverse, realistic, and synchronized facial
reactions under both online and offline settings.

Some previous studies have investigated this MARG task
by now. They model one-to-many relationships by leverag-
ing the inherent non-determinism in the model generation
process[4][13][28], while their results were far from satisfac-
tory. Yu et al.[28] used a diffusion model to generate listener
features, and Liang et al.[13] proposed a UniLM-based[8]
model that unifies both online and offline tasks through a
shared fast-forward layer.

Other methods [16][1][27] summarized appropriate facial
reaction distributions during the training phase to represent
all facial reactions considered appropriate in response to
the speaker’s behavior. Based on this, they can sample a
set of embeddings representing different appropriate facial
reactions for generation for inference. However, the facial
reaction of a listener to a speaker’s behavior depends not
solely on the stimulus presented by the speaker but also on
contextual factors such as the conversational environment
and the listener’s disposition. Thus, simply utilizing the
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Fig. 1. Graphical illustration of listener reaction generation (gray lines) and
posterior latent distribution estimation (dashed blue lines).

speaker’s actions can not capture the appropriateness of the
one-to-many mapping.

Following the success in the verbal diverse conversation
flow generation [6][2][3], we introduce discrete latent vari-
ables to tackle this one-to-many mapping problem. Each
value of the latent variable corresponds to the particular
reaction intent of one response. Apart from the aforemen-
tioned approaches, the latent variable is generated through a
posteriori estimation process. As shown in Fig. 1, given the
speaker actions and one selected appropriate listener reac-
tions, the underlying latent reaction intents can be estimated
as p(z|s,r). We can generate multiple listener reactions
conditioned on the speaker actions and latent variables.
We conducted experiments on the datasets provided by the
REACT2024 challenge, and the results demonstrated that
our approach is capable of generating listener reactions with
higher diversity. As a result, we achieved first place in the
offline track and second in the online track.

II. METHODOLOGY

Let V = {v1,---,vr} denotes the speaker video with
T frames, we divide the corresponding audio A into win-
dows of 40ms length each for aligning to video frames,
denoted as A = {a1,---,ar}. Given V and A, the
task is to predict non-verbal listener facial reaction se-
quence R = {ry,---,rr}, in which the reaction frame
re = {au}, - aul® valences, arousaly, expt, - - -, expl}
consists of 15 Facial Action Units (AUs), Valence and

Arousal (VA), and eight facial expressions.

The architecture of our model is illustrated in Fig. 3,
utilizing the same Transformer Encoder-Decoder backbone
for both online and offline tasks.



Fig. 2. Curriculum learning process.

A. Data Processing

We leverage off-the-shelf tools to extract reaction-relevant
features, limiting video input to facial features. Since the
target is to generate AUs, VA, and expression distribution,
We use extracted features of these three as part of the
encoder input. Following [13], we use MEGraphAU [14],
ResMaskNet [17] and FaceTorch! to extract these three
features. In addition, to generate high-fidelity listener videos,
we employ the 3D Morphable Model (3DMM) [26] as an
intermediary representation and part of the speaker feature
encoder.

For the audio, We extract the Mel-frequency cepstral
coefficients (MFCC) feature with the corresponding MFCC
Delta and Delta-Delta features. Furthermore, we incorporate
deep speech features extracted by a fine-tuned Wav2Vec?2 [7]
model?.

To adapt the transformer model, we further converted the
listener’s non-verbal reaction label into tokens. Expression
distribution and 3DMM coefficients are tokenized using K-
means to assign class center indexes. The AUs are tokenized
by identifying all combinations of 15 AUs’ activation per
frame and assigning these combinations of unique identifiers
in the AU codebook. And VA values are tokenized by
mapping them to the nearest 80x80 grid point and assigning
identifiers in the VA codebook.

B. Transformer Block

In the speaker encoder, after extracting the features, we
stack the output hidden states of a linear layer over the
feature dimension. And in the listener decoder, the same
treatment is applied to the embeddings. Unlike methods
that generate tokens of different phases in the temporal
dimension, such as [13] and [12], our treatment improves
computational efficiency and has better temporal consistency.
Also, since hidden states are stacked and transformed from
features of different phases, we use the gated attention unit
(GAU) [10] instead of multi-head attention (MHA) in the
vanilla Transformer[25] to prevent this relationship from
breaking. GAU is a single-head gated attention mechanism
and generally uses a small key width and a large value width,
with two GAUs replacing a single transformer layer.

Uhttps://pypi.org/project/facetorch/
Zhttps://huggingface.co/jonatasgrosman/wav2vec2-large-xlIsr-53-french

C. Training

Since the experimental results show that it is more difficult
for the model to learn one-to-many relationships directly,
we leverage curriculum learning to learn the generation of
listener reactions gradually. As shown in Fig. 2, the learning
process involves two stages: during Stage 1, a coarse-grained
baseline model is trained under the simplified one-to-one
mapping relationship; during Stage 2, the model for fine-
grained generation is further trained to generate diverse
listener reactions. In the following, we will provide the
details about the two-stage curriculum learning processes.

1) Coarse-grained Generation: We first train a coarse-
grained baseline model under the simplified relationship of
one-to-one mapping, in which the training is achieved by
directly pairing the input speaker actions with the corre-
sponding listener’s ground truth facial reactions. Given one
training pair of speaker and listener (s,r), we need to
minimize the following Causal Listener Generation (CLG)
loss:

T
Lorg = Z Z CrossEntropy (p(fm\s,rq), rm) (D

t=1 ceC

where T is the length of listener reactions and r.; donates
the previously generated tokens. And c refers to four types
of tokens to generate: 3DMMs, AUs, VA, and expressions,
respectively.

2) Fine-grained Generation: Based upon the coarse-
grained baseline model, we further train the model under the
relationship of one-to-many mapping. We randomly sample
one reaction sequence from all appropriate reactions to the
speaker as the label in each iteration. A K-way categorical
variable z is introduced for modeling one-to-many relation-
ships. Each value of the latent variable corresponds to the
particular reaction intent of one response. The latent variable
is generated through a posteriori estimation process:

21,22 Np(z|577“)

2
= Gumbel-Softmax(W,h, +b,) € RX @

where h, € R? is the final decoder hidden state of the input
special mask token [M]. We use Gumbel-Softmax[11] to
sample from the categorical distribution as it is differentiable.

We then employ three loss functions: Causal Listener
Generation (CLS) loss, Reaction matching (RM) loss, and
Bag of Words (BOW) loss.

Based on (1) and conditioned on the latent variable and
the speaker, the CLG loss in stage 2 is defined as:

T
ﬁCLG = Ez~p(z|s,'r’) Z Z (p(ft,c|2, S, 7"<t)a rt,c) 3)

t=1 ceC

and c refers to four types of tokens to generate: 3DMMs,
AUs, VA, and expressions, respectively.

Following previous works [13][2], a Reaction matching
(RM) loss is introduced to help distinguish whether the
reaction is appropriate to the speaker’s action and consistent
with the context. The positive and anchor training samples



Fig. 3. Architecture of appropriate listener reaction generation with discrete latent variable.

are randomly sampled from all appropriate reactions, and
the negative samples r~ are created by randomly selecting
non-appropriate responses from the dataset.

Ly =— logp<linear(hzl) =1|s,r, 2’1)
“4)
- logp<linear(h22) =0|s,r7, Z2>

Besides the RM loss, the bag of words (BOW) loss [29]
is also employed:

Leow = —E | )ET: Zlog exp f(hz)e,e
- z1~p(z|s,r
S T el

&)
where V. refers to the whole vocabulary. The function f is
defined as follows:

f(x) = softmaz(Wz 4 b) € RIVl (6)

The BOW loss discards the order of reaction tokens and
forces the latent variable to capture the global information
of the target listener response. The final loss for stage 2 is a
summation of the above losses:

L=XLcrg+ MLry + MLpow @)

D. Inference

We use auto-regression for generation. In the offline case,
we utilize the whole temporal dimension of speaker features.
In the online case, only information up to the timestep ¢t — 1
is utilized to predict the reaction at timestep ¢ for both the
speaker and the listener. And the inference is carried out with
the second stage’s models as follows:

1. Conditioned on each latent value z € {1,---,K},
generate K corresponding listener reactions and compute
RM logits p(RM _logits|s, z).

2. Preform ranking and select the latent with the highest
coherence value:

argmax p(RM logits|s, z) (8)
ze{l, ,K}

ZF =

and based on which generate multiple listener reactions.

In generating the listener tokens, we adopt language model
(LM)[18] hyperparameters such as temperature, top-k, and
top-p for sampling control, which can empirically balance
appropriateness and diversity, similar to [13].

III. EXPERIMENTS

A. Dataset
We  evaluate our method on the official
dataset[20][15][24][9] of the REACT2024 challenge,

which consists of 5924 clips of 30 seconds each (3188
training examples, 1124 validation examples, and 1612 test
examples). The video clips are selected from the existing
RECOLA[19] and NoXI[5] datasets.

B. Evaluation Metrics

We follow the baseline papers [21][22][23] to evaluate
our method using six metrics: facial reaction correlation
(FRCorr), appropriate facial reaction distance (FRDist), di-
verseness of facial reactions (FRDiv), facial reaction variance
(FRVar), diversity among facial reactions generated from
different speaker behaviors (FRDvs), and synchrony between
generated facial reactions and speaker behaviors (FRSyn).
The detailed formulations can be found in the theory paper
[23]. The appropriateness of reaction is measured by FRCorr
and FRDist, while diversity is measured by FRDiv, FRVar,
and FRDvs. Other metrics are auxiliary.



TABLE I
RESULTS ACHIEVED ON THE TEST SET

Method Appropriateness Diversity Synchrony
FRCorr (1) FRDist (]) FRDiv (1) FRVar (1) FRDvs (1) FRSyn ({)
B_Random 0.05 237.21 0.1667 0.0833 0.1667 43.84
B_Mime 0.38 92.94 0.0000 0.0724 0.2483 38.54
Offline Results
Trans-VAE 0.03 92.81 0.0008 0.0002 0.0006 43.75
BeLFusion (k=1) 0.10 [92.32] 0.0068 0.0073 0.0094 44.94
BeLFusion (k=10) 0.12 91.60 0.0105 0.0082 0.0116 44.87
BeLFusion (k=10) + Binarized AUs 0.12 94.16 [0.0360] [0.0249] [0.0384] 49.00
REGNN 0.19 84.54 0.0007 0.0061 0.0342 41.35
Ours (w/o latent) 0.1664 93.97 0.1018 0.0325 0.1 44.71
Ours (w/ latent) [0.139] 140.5 0.3059 0.1409 0.2881 [44.19]
Online Results
Trans-VAE 0.07 90.31 0.0064 0.0012 0.0009 [44.65]
BeLFusion (k=1) [0.12] 91.11 0.0083 0.0079 0.0103 45.17
BeLFusion (k=10) [0.12] [91.45] 0.0112 0.0082 0.0120 44.89
BeLFusion (k=10) + Binarized AUs [0.12] 94.09 [0.0379] [0.0248] [0.0397] 49.00
QOurs (w/o latent) 0.1587 92.05 0.1029 0.0387 0.1065 44.52
Ours (w/ latent) 0.1436 135.5 0.303 0.139 0.2878 44.05
TABLE II
FINAL RESULTS AND RANKINGS
Rank Team Name Appropriateness Diversity Synchrony
FRCorr (1) FRDist (]) FRDiv (1) FRVar (1) FRDvs (1) FRSyn ()
Offline Results
1 USTC-AC (Our Team) 0.2172 100.43 0.1675 0.0535 0.1385 44.54
Online Results
1 AISLAB 0.3104 84.94 0.1167 0.0349 0.1165 47.43
2 USTC-AC (Our Team) 0.2186 88.32 0.1029 0.0387 0.1065 4441
3 CNU_SCLAB 0.0322 11.68 0.0000 0.1006 0.196 45.29
C. Results IV. CONCLUSION

We compare our approach with the baseline methods and
present the results in terms of appropriateness, diversity, and
synchrony metrics. The overall scores on the test set are
provided in Table I. Where bolded numbers (x) indicate the
best results, underlining (x) indicates the second-best results,
and brackets ([x]) indicate the third-best results.

Our approach outperforms the baseline methods in most
metrics. In addition, the model with hidden variables
achieves the highest diversity, while one without hidden
variables shows better appropriateness measured by FRCorr
and FRDist. These results indicate that utilizing hidden
variables significantly enhances generation diversity while
maintaining high appropriateness.

As shown in Table II, we achieved first place in the offline
track and second in the online track.

In this paper, we utilize discrete latent variables to model
the one-to-many appropriate reaction relationship to generate
diverse and appropriate reactions in dyadic interactions. Ex-
perimental results show that our method achieves impressive
diversity with competitive appropriateness. As a result, we
achieved first place in the offline track and second in the
online track.
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