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Abstract— Facial reaction generation has gained prominence
in recent years. However, while there has been extensive
research on synthesizing facial expressions from the perspec-
tive of the speaker, the generation of reactions from the
listener’s standpoint remains relatively unexplored. Predicting
the facial reactions of the listener in a conversational setting
presents a challenge due to the diverse range of reactions
that can be elicited by the behavior of a single speaker.
In this study, we introduce a Multimodal Transformer-based
Variational Autoencoder designed to learn the distribution of
listener facial reactions based on speaker audiovisual cues. Our
proposed approach incorporates the Multimodal Bottleneck
Token mechanism to capture interactions between acoustic
and visual speaker features and utilizes the Variational Au-
toencoder framework to generate latent representations of
multiple listener reactions. Additionally, we employ Gaussian
Mixture Models to enhance the generative capabilities of
the Autoencoder. Experimental results demonstrate that our
method surpasses baseline models and previous approaches on
the REACT24 benchmark dataset.

I. INTRODUCTION

In our everyday lives, conversations play a crucial role,
involving dynamic exchanges where individuals take turns
speaking and listening to convey and receive information
during face-to-face interactions. While the speaker com-
municates verbally, the listener typically responds through
non-verbal cues, providing immediate feedback. According
to Song et al. [12], the listener’s reactions to the same
information from the speaker can vary depending on different
contexts.

Despite significant research efforts focused on synthe-
sizing speech from the speaker’s perspective, there has
been a lack of emphasis on generating the listener’s re-
action. Song et al. [9] introduce a benchmark for gener-
ating multiple appropriate facial reactions, which includes
a multimodal dataset and three baseline non-deterministic
models: TransVAE utilizes the Transformer-based Variational
Autoencoder, the BeLFusion, and a graph neural network
approach [5]. Meanwhile, Luo et al. propose ReactFace
[13], an encoder-decoder architecture designed to address
the challenging task of synchronizing the generated listener’s
reaction with the visual and acoustic features of the speaker
in the temporal dimension.

In this study, our objective is to enhance the interaction
between the audio and visual modalities of the speaker by
employing the Multimodal Bottleneck Transformer (MBT)
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[6] for the encoder component. By leveraging the informative
interaction features extracted from the MBT, we aim to
enhance the effectiveness of the generative function per-
formed by TransVAE and the cross-modal transformer in
the decoder. In addition, we utilize the effectiveness of the
Gaussian Mixture of Models [8] to learn the distribution of
listener reaction. Our proposed model demonstrates a no-
table improvement in terms of appropriateness and diversity
evaluation metrics compared to existing methodologies [11],
[10], [4], [13].

Our contributions in this paper are summarized as follows:
• We utilize the Multimodal Bottleneck Transformer to

perform cross-modality learning between audio and vi-
sual features extracted from the speaker’s video. The au-
dio and visual attributes can exchange their meaningful
information with each other via a set of learnable tokens
called bottleneck tokens. Therefore, we can improve
the output of the speaker behavior multimodal feature
extractor.

• We use the sequence of the speaker’s emotional features
to align the generated listener’s reaction. By exploiting
this particular information of the speaker, our model can
work with 3 modalities including acoustic, visual, and
emotional input.

• We attempt to model more complex distributions of the
listener’s reactions by applying the Gaussian Mixtures
of Models. The Transformer VAE can generate more
sophisticated features to describe the listener’s behav-
ior rather than features simply sampled from a single
Gaussian distribution.

II. PROPOSED METHOD

Our proposed model adapts the encoder-decoder architec-
ture receiving the video of a speaker as input and generating
3D facial features and facial reactions of the listener. The 3D
facial feature is a sequence of 3D Morphable Model (3DMM)
[1] coefficients used to render the sequence of frames of
the listener based on a static reference image. On the other
hand, the facial reaction includes three widely-used facial
descriptors: the probabilities of eight emotions, 15 well-
defined facial movements also known as the action units,
and the facial affect consisting of valence and arousal levels
[14]. The model comprises two main functional blocks:
the speaker behavior multimodal feature extractor and the
multiple appropriate listener reaction generator. A detailed
illustration of our model is shown in Figure II.
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Fig. 1. Block diagram of the proposed method.

A. Speaker Behavior Multimodal Feature Extractor

Initially, the speaker encoder extracts the visual and
acoustic features from the video by exploiting the ded-
icated neural networks. Particularly, we use pre-trained
Wav2Vec for generating audio modalities feature As
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Sequentially, we propose the Multimodal Bottleneck Trans-
former for cross-modal learning. It is a low-cost transformer
approach for fusing two time-series inputs with long se-
quence lengths. It adapts the idea of bottleneck tokens [12] to
force the model to extract the most meaningful information
from each modality. We define a sequence of M learnable
vectors B1:M =

{
b1, b2, bM |bm ∈ RC

}
called bottleneck

tokens where M is significantly less than T. We will use
them as a means to transfer information between audio and
visual features. The illustration of MBT in Figure II-Aa is
formulated by these below functions:
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Using bottleneck tokens will prevent the audio transformer
encoder layer (TransEncLayerAl ) from paying attention to
the entire visual feature F s

1:T , and vice versa. The audio and
visual encoders only exchange their useful information via
the bottleneck tokens B1:M . Moreover, this method is more

efficient than feeding the audio and visual sequence into a
common transformer encoder layer. As we know the attention
mechanism is sensitive to the length of the input sequence,
concatenating the audio and visual features and feeding
them to a self-attention layer will consume a significant
computation. Because the number of bottleneck tokens M
is noticeably less than the sequence length T , it decreases
the input sequence length of the transformer encoder layer
compared to the naı̈ve concatenating approach. As a result,
utilizing bottleneck tokens can reduce the computational cost
and improve the quality of cross-modal features Ās

1:T and
F̄ s
1:T in video understanding.

Besides video information, our network also lever-
ages the emotional attributes of the speaker Es
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to gain more knowledge about

the speaker’s behavior. The input emotional feature is
transformed to Ēs
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by a

linear layer so that it is projected to the same di-
mensional space as the audio and visual features. As
a result, we obtain three latent sequences of features
from three corresponding modalities. Each sequence is
split into two segments including the past behavior
(Ās
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The length of the current behavior is also the number of
timesteps computed in one inference called the window size
w. Both current and past behavior features are fed into the
multiple appropriate listener reaction generator. Additionally,
in the training process, we also regenerate the 3D facial
attributes of the speakers Rs

1:T = {rs1, rs2, ..., rsT } from the



latent visual features and used as an auxiliary output of the
model.

B. Multiple Appropriate Listener Reaction Generator

Multiple Appropriate Listener Reaction Generator is a
nondeterministic functional block that generates the sequence
of listener’s aligned emotional features from the speaker’s
behavior features. Firstly, a past interaction encoder lever-
ages the speaker behavior features in the past including
audio, visual, and emotional features to extract the enhanced
interaction features H l
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the past predictions of the 3D listener face Rl
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}
by transformer-based cross-attention.

The process of Past Interaction Encoder is illustrated in
Figure II-Ab and formulated by below formula:
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Where X1
1:T−w, ..., X

3
1:T−w are temporary variables and

TransDecLayer is used to perform cross-attention. After-
ward, we define 2 pairs of learnable tokens: 1

tok−1
tokand

2
tok−

2
tok aiming to construct two Gaussian distributions. A con-
ventional transformer autoencoder is employed to learn two
suitable facial reaction distributions for the listener based on
the enhanced interaction features H l

1:T−w. Two sequences
of vectors Z1

t−w+1:t and Z2
t−w+1:t are sampled from two

corresponding distributions and aggregated by:
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1
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2
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Where α1 and α2 are two trainable scalars. The aggregated
sequence of vectors ZT−w+1:T represents the facial reaction
of the listener. Based on these latent features, a sequence of
3D listener facial coefficients is synthesized by the Listener
Reaction Decoder using the audio, visual, and emotional
features of the speaker’s current behavior. The operation of
the Listener Reaction Decoder is shown in Figure II-Ad and
formulated by the equations below:
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Where Y 1
T−w+1:T , ..., Y

4
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ables and PE is positional encoding. Finally, the pre-
diction of the listener’s facial reaction El
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is obtained from a

linear mapping layer with the predicted 3D features of the
listener R(T − w + 1 : T )l.
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III. EXPERIMENTS
A. Datasets

Our experiments were conducted on the REACT24
dataset, which is a compilation of two multimodal datasets
NoXI [2] and RECOLA [9]. There are 2962 pairs of
speaker’s and listener’s clips. To construct a multiple ap-
propriate facial reaction dataset, Song et al. [12] applied
the automatic appropriate facial reaction labeling strategy
to define the correct facial reactions corresponding to each
speaker in the dataset.

Regarding the assessment, we follow Song et al. [12]
using a well-defined set of evaluation metrics to measure
the appropriateness, diversity, realism, and synchrony of our
proposed model’s output. Concisely, we use Facial reaction
distance (FRDis) and Facial reaction correlation (FRC) for
appropriateness measurement. To evaluate diversity, we adapt
Facial reaction variance (FRVar), Diverseness among gen-
erated facial reactions (FRDiv), and Diversity among facial
reactions generated from different speaker behavior (FRDvs).
For synchrony evaluation, the Time Lagged Cross Correla-
tion (TLCC) is computed to measure the leader-follower re-
lationship between the speaker and listener (FRSyn). Lastly,
they use the Frechet Inception Distance (FID) as the realism
score (FRRea). The higher value of the mentioned evaluation
metrics is better, except FRDis, FRRea, and FRSyn.

B. Experiment settings

We followed the pre-processing steps of the baseline
framework. Facial images from all frames were cropped and
resized to 224x224. The EMOCA [3] models were utilized to
extract 3D Morphable Model (3DMM) coefficients including
the pose and expression parameters following the FLAME
3DMM. We used PIRender [7] to render the sequence of
facial frames from the 3DMM coefficients. We implemented
our solution using the Pytorch library and executed it on the
Linux machine with the NVIDIA A100 GPU. Regarding the
hyperparameters of MBT, we used 2 layers of transformer
encoder with 4 heads of self-attention and a latent dimension
of 128. The number of bottleneck tokens should be signif-
icantly less than the length of sequence input so we used
4 bottleneck tokens in our experiments. For the GMM, we
used two Gaussian distributions with corresponding learn-
able weights to describe the listener reaction distribution.
Discussing the training settings, we clipped the input videos
at random positions with a length of 256 frames. We trained
our model on these clips using the AdamW optimizer with a
batch size of 4 for 20 epochs. Meanwhile, in the evaluation,
we used full clips with 750-frame lengths and decreased the
batch size to 1. In both training and evaluation, the window
size for online mode is 8 frames per prediction.

C. Experimental results

Firstly, we evaluated variations of our proposed method
in terms of appropriateness and diversity on the validation
set. Due to the similarity in model structure, we consider
ReactFace [13] as our main competitor. We reproduced the
results of the ReactFace [13] model and Trans-VAE[11]



Fig. 2. Illustration of submodules in our proposed method.

TABLE I
THE RESULTS ON VALIDATION SET. (1) DENOTES OUR MODEL WITHOUT

USING SPEAKER EMOTION AND GMM. (2) DENOTES OUR MODEL

WITHOUT USING THE GMM. (3) DENOTE OUR MODEL USING SPEAKER

EMOTION AND GMM.

Method Appropriateness Diversity
FRCorr FRDist FRDiv FRVar FRDvs

TransVAE 0.17 127.07 0.0024 0.0013 0.0024
ReactFace 3.74 50.68 0.1293 0.0579 0.1293
Ours (1) 4.25 55.18 0.1561 0.0773 0.1578
Ours (2) 4.99 93.77 0.1166 0.0703 0.1191
Ours (3) 4.52 72.77 0.1910 0.0988 0.1926

model and compared them with our method. As shown in
Table I, the ReactFace model outperformed the baseline
Trans-VAE across all evaluation metrics. Our model, us-
ing MBT and ignoring the speaker’s emotion and GMM,
achieved higher results than the ReactFace model, except
for the FRDis score. By leveraging the speaker’s emotion,
our model can improve the appropriateness but trade-off
with the decrement of diversity metrics. Eventually, when
the GMM was applied, it significantly boosted the diversity
of our models’ output. As a result, our full model generates
more diverse listener reactions compared to the ReactFace
model. Concerning the appropriateness, our model achieves
a better correlation metric while ReactFace attains a lower
distance to the ground truth.

Next, we chose our model with the best diversity scores
in the validation set and conducted the assessment and
comparison on the test set. According to Table II, our
proposed model outperforms the Trans-VAE and BeLFusion
baselines in FRDist, FRVar, and FRDvs. These baselines
have relatively low variations when our proposed method
can accomplish approximately similar diversity scores to
the grouth truth. Regarding the appropriateness, our FRDist
exhibits a significant improvement compared to previous
studies. As a result, our model successfully synthesizes
multiple appropriate facial reactions in a dyadic conversation

setting.

IV. CONCLUSIONS

Bottleneck Transformer to improve the extracted interac-
tion feature between speaker and listener in conversation.
Based on the informative video feature and the emotion of
the speaker, we use the Transformer Variational Autoencoder
combined with the Gaussian Mixture of Models to generate
multiple appropriate reactions from the listener. This frame-
work accomplishes a noticeable enhancement compared to
prior methods in multiple appropriate facial reaction gen-
eration. Our future research will focus on balancing the
objective functions including the reconstruction loss, energy-
based diversity, and the Kullback-Leibler loss in the training
process.
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