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Abstract— Creating a human-like interface in human-robot
interaction is a formidable challenge. Many efforts have been
made to mimic the human ability of attentive listening and
synchronous participation in conversations, especially in terms
of facial expressions and head movements. By taking advantage
of transformer-based sequence generation models and quantiza-
tion techniques, this advantage is further enhanced in the areas
of text, video, and audio generation. Using Finite Scalar Quan-
tization, we develop a facial expression tokenization module
that is able to encode facial expressions in a finite, semantically
meaningful vocabulary. Using this module, we establish a more
powerful cross-modality transformer-based, non-deterministic
model that is able to learn multiple appropriate facial responses
in a dyadic conversational context. 1

I. INTRODUCTION

In human face-to-face conversations, two distinct roles
emerge: speakers who articulate their thoughts, and listeners
who respond with facial expressions and synchronized head
movements, influenced by individual characteristics. The
REACT competition [15] has been proposed to address this
problem, called the Multiple Appropriate Facial Reaction
Generation problem (MARG), and provides a set of eval-
uation metrics that this work takes advantage of. Specif-
ically, the challenge requires generating multiple outputs
in response to the same stimuli from the other agent, and
then evaluating the appropriateness, diversity, synchrony, and
realism of the generated output. This work won the online
track of REACT2024 [14].

Our work localizes into the online MARG as in REACT
[15]. Noteworthy recent approaches [10], [14] decompose the
main task into two sub-tasks: Facial Motion Representation
Learning and Appropriate Facial Reaction Prediction. In
Facial Motion Representation Learning, the VAE family
plays the pivotal role in grouping similar motions by em-
ploying either non-deterministic methods (e.g., VAE [13],
Normalizing Flow [6]) or deterministic methods (e.g., VQ-
VAE [10], Codebook tokenization [8], etc.). While VAE can
model encoded features as normal distributions, search-based
vector quantization methods such as VQ-VAE are gaining
popularity by providing stable training, better control with
discrete latent space, and training efficiency. For generative
predictors, the mainstream approach relies on either Trans-
former [10], [8], [7], Diffusion [13], [3], or Normalizing
Flow-Recurrent Neural Net [6]. The generative models with
a multinomial sample step can introduce a non-deterministic
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aspect to the generated motion aligning with the vector-
quantization-based tokenizer to achieve desirable balance
appropriateness, diversity, and context synchrony [18], [10].
However, the trickiness in VQ-VAE’s codebook size defini-
tion remains a technical issue varying case by case: larger
sizes result in highly sparse codebooks, while smaller ones
yield fuzzy and overlapping embeddings between distinct
motions, and the problem of codebook collapse when only
a small proportion of the codebook is used. Furthermore,
generated motions guided by facial features (e.g., 3DMM,
AUs) though temporally reasonable, lack clarity between
facial components and convey little meaningful intent.

Inspired by the current progress of generative and multi-
modality models, this paper aims to contribute to the existing
literature in the following aspects: Firstly, we experiment
with a method for generating actions based on tokenized
facial states in a single-frame manner, utilizing state-of-the-
art quantization methods. Secondly, we enhance the attention
modules by integrating different modalities, enabling the
listener transformer autoregressive predictor to comprehend
dyadic conversations over extended contextual spans, thereby
generating multiple non-deterministic appropriate facial re-
actions.

II. METHODOLOGY

We model a sequence-generating problem to generate
multiple appropriate facial reactions, in which every state
of the face is accordant with a facial token. The generator
comprises two parts: (1) face tokenizer and (2) reaction
predictor. The face tokenizer is described in II-B and the
predictor in II-C.

A. Problem definitions

To generate meaningful facial reactions, one will digest
the content of the conversation, personality, and expressions
of the counterpart. Hence, the input for the model as the
listener is the speaker’s facial status and speech, then output
the appropriate facial states. We propose a two-stage learning
system. A non-autoregressive VQ-transformer tokenizer T
that learns to discretize facial states into finite states as
tokens. So that the autoregressive cross-modality transformer
model P can learn the relationship between the speaker’s
facial expression and voice, and the past listener’s expression
to predict a multinomial probability of the future face that
allows sampling non-deterministically.
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Fig. 1. Face tokenizer. To encode a facial image as a token, the
proposed tokenizer is designed to learn face-to-face mapping via a self-
supervised reconstruction task. Employing Finite Scalar Quantization, this
tokenizer eliminates the need for a codebook learning phase and enhances
codebook efficiency by utilizing a rounding function f (z) and facilitating
token conversion through a bijection function. After training the encoder
and decoder with 3DMM, they will be frozen, and the emotion decoder
will be trained to generate the corresponding emotion vector.

Let Fn = { f1, f2, . . . , fn} denote the sequence of facial
states, where fi ∈ Rd f represents the 3D Morphable Face
Models (3DMM) vector of the face at timestep i. Similarly,
En = {e1,e2, . . . ,en} represents the sequence conveying facial
descriptors, with ei ∈Rde encapsulating 15 facial action units,
facial affect, and categorical facial expressions at timestep i.
Additionally, Sn = {s1,s2, . . . ,sk} signifies the sequence of
sound, where si ∈ Rds represents the sound feature vector,
noting that this sequence may not align in length with the
facial and emotional sequences. The system accepts the facial
sequence Fsp

i−w:i of the speaker and the corresponding sound
feature vector sequence Ssp

i−w:i to generate the facial sequence
F li

i+1:i+p and the emotion sequence E li
i+1:i+p for the listener,

where i denotes the current timestamp, w∈N∗ represents the
context window of the system, and p ∈ N is the number of
future frames that the system predicts at once. The predicted
facial sequence then will be fed into a face renderer model
to generate a human-like face.

B. Facial tokenizer

The Vector Quantization method, VQ-VAE [16], in con-
junction with the autoregressive model, has been instru-
mental in the development of various robust image, audio,
and video generation models. However, the original VQ-
VAE exhibits diminished effectiveness when quantized to
codebook sizes exceeding 210 [9]. To address this limitation,
we propose leveraging a more contemporary quantization
approach that is both smaller in scale and more adept at
handling larger codebooks. This upgrade is motivated by
two primary considerations: Firstly, a broader vocabulary
enables the predictor to articulate more nuanced expressions,
and secondly, an optimized utilization of quantization space
enhances its ability to capture facial features accurately. Con-
sequently, we empirically opt for Finite Scalar Quantization
[9] to quantize facial feature.

The tokenizer architecture comprises three primary com-
ponents as illustrated in Fig. 1: a transformer encoder E,
a quantizer Q, and two transformer decoders D3dmm and
Demotion. The encoder E transforms the features of the input
facial sequence x into a d-dimensional latent vector z ∈ Rd :

z = E(x). (1)

Subsequently, the quantizer Q maps z to ẑ, which belongs
to a finite set of vectors C. The size of C is the vocabulary
size of the predictor. This quantization is achieved through
a bounding function f that selects ẑ from L unique values,
with each entry computed as:

ẑi = f (zi) := round
(⌊

L
2

⌋
tanh(zi)

)
∈ {−1,0,1}. (2)

Each ẑ vector is represented by a token which is the order
of that vector in C. The order is computed by a bijection
function similar to token = ord(ẑ).

Finally, the reconstruction is obtained via:

x̂3dmm = D3dmm(ẑ),

x̂emotion = Demotion(ẑ).
(3)

As the quantization Q operates heuristically, we solely
train E and D using the reconstruction loss through 2
phases of training. To further customize quantization for
facial expression representation, we propose the integration
of a BlendShapeLoss function during the first phase of
tokenizer training. This function leverages the Blend Shape
feature utilized by Faceverse for rendering facial states [17].
Specifically, the facial expression in 3DMM vector βt ∈
Rdm , where dm denotes the dimension of the coefficient, is
segregated into brow coefficients, eye movement coefficients,
mouth movement coefficients, face rotation, and translation
coefficients. We then compute reconstruction loss separately
for each group of coefficients to emphasize these features
during tokenizer training:

LBlendshape(E,D3dmm) =
∥∥xeyebrow − x̂eyebrow

∥∥
+
∥∥xeyemovement − x̂eyemovement

∥∥
+ . . .

+∥xrotation − x̂rotation∥
+∥xtranslation − x̂translation∥ .

(4)

In the second phase of training the tokenizer, E and D3dmm
will be frozen, and only Demotion will be trained to generate
the corresponding emotion vector of a face status using an
L1 loss:

L(Demotion) = ∥xemotion − x̂emotion∥ . (5)

Additionally, we refine the quantization technique to
discretize distinct facial features more efficiently. Through
empirical investigation, we have observed that augmenting
the vocabulary size of the predictor improves output quality
up to a certain threshold. Beyond this threshold, the capacity
of the predictor reaches saturation. We formulate the VQ-
VAE transformer to represent each facial state as a single
token, aiming to provide the facial expression predictor with
maximally detailed signals rather than action tokens. To the
best of our knowledge, this is the first to explore facial
quantization in a single-frame manner.
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Fig. 2. Predictor Diagram. The predictor P utilizes Wav2Vec2 to extract speaker sound features, employs the face tokenizer T to quantize facial
expressions, incorporates cross-attention to merge sound and facial features, and samples from the distribution to generate the next p facial tokens. The
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Fig. 3. Cross-Modality Attention Block receiving feature vectors from
two modalities x and y, employing a gated parameter α to regulate feature
fusion.

C. Crossmodal autoregressive facial reaction

The predictor P takes the tokenized sequence of facial ex-
pressions from the speaker, denoted as Fsp, and the speaker’s
sound features Ssp to predict the subsequent facial expression
as illustrated in Fig 2. The predictor is divided into two parts:
the speaker encoder and the listener decoder. In the speaker
encoder, Wav2Vec2 extracts sound features from raw audio,
and the face tokenizer T turns the speaker facial sequence
into face tokens. Then, sound features and face tokens, are
processed by n normal self-attention layers and pass through
cross-attention blocks to create a speaker feature vector. In
the listener decoder, the speaker feature and past listener
feature will be similarly processed by n self-attention layers
and fed to n cross-attention layers to make the output more
consistent. In processing the sound signal, we learn that the
VQ-Wav2Vec model [1] produces better results than directly
using Mel-frequency cepstral coefficients (MFCC) [10], [14]
as sound feature. Subsequently, we leverage the enhanced
sound feature extraction capabilities of Wav2Vec2 [2] as it
outperforms VQ-Wav2Vec, thus selecting it for sound feature
extraction. Regarding the attention mechanism, we adopt
the architecture of the FIBER attention block [5], which
incorporates a learnable gated parameter to modulate the
influence of features from different modalities, as illustrated
in Fig. 3.

To enhance the model’s usability, we adopt a patch-based
approach wherein the model predicts the next p tokens
instead of a single token, referred to as the model’s patch
size [10]. Through experimentation, we ascertain that smaller
patch sizes yield improved model performance, albeit at a
linear increase in computational requirements. Consequently,

we empirically set the patch size to 32 frames. To ensure
consistent yet dynamic output during test time, we scale
logits by a temperature t and cut the top k of the predic-
tion then apply a multinomial sampling on the predicted
distribution to create non-deterministic appropriate output.
We employ teacher forcing and random masking past tokens
during training to make the model more generalized across
training data.

III. EXPERIMENTS AND RESULTS

To evaluate the efficacy of our proposed approach, we
utilized the datasets from NoXi [4] and RECOLA [12],
which contain internet conference data. We applied the
validation techniques outlined in the React Competition [15]
and compared our results with the baseline outcomes from
the REACT 2024 competition [14].

Implementation Details. The tokenizer was implemented
with a latent dimension dz = 252, codebook size of 2048,
and quantization levels [8,5,5,5]. The training process em-
ployed a two-phase strategy, optimizing the 3DMMs output
and emotion output sequentially. The predictor architecture
comprised a block size of 256, an embedding dimension of
256, and 8 layers of attention in each attention block. The
tokenizer and predictor models were each trained for 500
epochs on an NVIDIA RTX 4060 Ti GPU.

A. Metrics

We leverage the metrics proposed by [15], which encom-
pass four categories: appropriateness, diversity, realism, and
synchrony. During testing and optimization, the priorities
are set as follows: appropriateness, synchrony, diversity, and
lastly realism, to guide the design decisions as the resulting
video exhibits qualitatively better stability and usability.
FRRea is considered a metric that does not directly reflect the
model’s performance, as it only compares frames after a 30-
frame interval and is strongly influenced by the photorealistic
renderer, in this case, PIRender [11]. Therefore, this metric
is not heavily weighted in comparison with other methods.
Moreover, in contrast to the approach proposed in [14],
the synchrony metric ought to be evaluated in proximity
to the ground truth representation, as a scenario wherein
the reaction signal exhibits perfect synchronization with the
speaker would be deemed unnatural.



TABLE I
BASELINES. COMPARISON OF OUR APPROACH WITH BASELINE MODELS [14] ON THE TEST SET.

Appropriateness Diversity Realism Synchrony

FRCorr (↑) FRDist (↓) FRDiv (↑) FRVar (↑) FRDvs (↑) FRRea (↓) FRSyn (·)

Ground truth 8.73 0.00 0.0000 0.0724 0.2483 - 47.69

Random 0.05 237.23 0.1667 0.0833 0.1667 - 44.10
Mime 0.38 92.94 0.0000 0.0724 0.2483 - 38.54
MeanSeq 0.01 97.13 0.0000 0.0000 0.0000 - 45.28
MeanFr 0.00 97.86 0.0000 0.0000 0.0000 - 49.00

Trans-VAE 0.07 90.31 0.0064 0.0012 0.0009 69.19 44.65
BeLFusion(k=10)+BinarizedAUs 0.12 94.09 0.0379 0.0248 0.0397 - 49.00

Ours 0.31 84.93 0.1164 0.0348 0.1166 34.66 47.42

(·) means the closer to the ground truth, the better.
indicates the best average performance among the heuristic baselines for the groups of metrics.

TABLE II
VECTOR QUANTIZE ABLATION. USING THE SAME PREDICTOR, WE ALTERNATED THE QUANTIZATION MODULE AND COMPARED ITS PERFORMANCE

ON THE VALIDATION SET.

Appropriateness Diversity Realism Synchrony

FRC FRD FRDvs FRVar FRDiv FRRea FRSyn

FSQ-val 0.2737 86.6145 0.1162 0.0345 0.1163 81.2801 45.7206
LFQ-val 0.2625 99.8672 0.1213 0.0434 0.1213 73.2092 45.8896
VQ-val 0.2693 91.5249 0.0943 0.0370 0.0943 96.1280 46.2099

B. Baseline comparison

Table I demonstrates that our proposed methods outper-
form all model-based baselines in the test set. The random
baseline produces high diversity but lacks appropriateness.
The mime baseline mimics the speaker’s reaction as the
listener’s reaction. Our method achieves similar diversity
to the random baseline while maintaining an appropriate
level comparable to the mime baseline. Regarding the model
baselines, Trans-VAE generates results that lack dynamics,
exhibiting low diversity and suboptimal appropriateness.
BeLFusion [3] with k = 10 and Binarized AU perform
slightly better than Trans-VAE but still fall short in terms
of diversity and appropriateness. Furthermore, our model
produces results that are highly temporally correlated with
the baseline, as evidenced by its FRSyn value being closer
to the ground truth. Our method achieves better diversity by
leveraging the advantages of a generative model, sampling
from a multinomial distribution. However, by applying a cut-
off to this distribution, it maintains high appropriateness. The
Wav2Vec2 feature extraction and fusion attention mechanism
enable our model to synchronize effectively with the coun-
terpart, even for subtle movements such as eye blinking and
mouth movements (see supplementary video).

C. Vector quantize ablation

We conducted an ablation study to identify the appropriate
vector quantization method for facial reaction generation, as
demonstrated in Table II. We evaluated traditional vector
quantization (VQ), Finite Scalar Quantization (FSQ) [9],
and Lookup-Free Quantization (LFQ) [19] with the same

vocabulary size of 2048 and the same predictor. The results
indicate that FSQ leverages a significantly larger vocabulary
set compared to traditional vector quantization. Additionally,
we applied several optimization techniques, such as k-means
initialization and quantization decay for the VQ. In terms
of implementation complexity, FSQ is simpler than LFQ,
despite sharing the idea of eliminating the lookup step.
It is noteworthy that the quality of the tokenizer strongly
correlates with the predictor output, as the final output must
be decoded by the tokenizer and carry the meaning of
each token. Consequently, based on the ablation study, we
selected FSQ due to its superior performance in terms of
appropriateness.

IV. CONCLUSION

In facial expression generation, employing a tokeniza-
tion approach to discretize intricate natural data into a
finite vocabulary set enhances the capability of sequence-
generative transformer-based models to produce diverse and
appropriate facial expressions. In our devised framework,
the utilization of a single-frame tokenizer employing Finite
Scalar Quantization creates a meaningful vocabulary set for
the generative task. Integrating a cross-modality transformer
model featuring the FIBER cross-attention block enables
the generative model to efficiently incorporate both sound
and facial expressions. Even though our method won the
online MARG track at the REACT 2024 competition, there
is still room for optimization, such as adding a controlling
parameter to tune the intrinsic characteristics of the listener,
making the model more usable in specific use cases.
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