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Abstract— Automatic identification of emotions is important
in human-centered computing. It allows machines to better
understand user emotions. Identifying emotions via neural
sensing techniques such as electroencephalogram (EEG) is a
promising approach. In this paper, we aim to identify the
emotions class from EEG signals. We frame emotion identifi-
cation as a classification task and apply spectral and statistical
encoders to extract the relevant features. We validate our
approach on EmoNeuroDB dataset. Our method outperforms
the EmoNeuroDB baseline, achieving a 42.10% increase in class
prediction accuracy.

I. INTRODUCTION & BACKGROUND

Emotion is a psycho-physiological phenomenon which
plays an important role in shaping human interactions. It is
closely linked to an individual’s personality, mood, temper-
ament, and motivation [1]. One key way in which emotion
influences human interaction is through its impact on com-
munication. Emotions affect how messages are conveyed,
perceived, and interpreted during social exchanges. Emotions
can be expressed through verbal cues such as voice tone,
choice of words, as well as through nonverbal cues like facial
expressions, body language, and gestures [2].

In human-machine interactions, the automatic identifica-
tion of emotions allows the machine to understand the user’s
emotional state [3]. This enables the machine to be more
empathetic in its interactions with humans [4]. Consider a
scenario where a virtual assistant detects sadness in a user’s
voice. Rather than processing commands mechanically, the
assistant can adjust its responses to offer a human-like empa-
thetic interaction. This improves the user experience, making
interactions with machines more natural and satisfying.

User emotions can be identified with various sensing
modalities such as facial expressions, speech patterns, textual
content, and physiological signals [5]. Facial expressions
refer to the different arrangements of facial muscles, which
can be systematically analyzed to determine a user’s emo-
tional states [6]. Speech-based emotion identification relies
on recognizing the connection between acoustic features
and emotions [7]. Changes in features like pitch, intensity,
and prosody in speech can indicate various emotions. For
example, when someone is sad, their speech may have a
lower pitch, less variation in pitch, and a slower speech rate.
Text-based emotion identification involves determining the
sentiment conveyed in a text. This involves analyzing syn-
tactic patterns and linguistic style to identify the underlying
emotions [8].
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However, the aforementioned sensing modalities may not
always reflect a person’s true emotional state. Some users
may have atypical facial and vocal expressions, while others
may intentionally mask their emotions. On the other hand,
physiological sensing captures users’ implicit signals, which
are difficult to manipulate. It tracks changes in parameters
like heart rate, skin conductance, and brain activity, providing
insights into user’s emotions and arousal levels.

Analyzing brain activity in response to emotional stimuli
can be conducted through methods like functional mag-
netic resonance imaging (fMRI) and electroencephalography
(EEG). These methods allow to observe which areas of
the brain are activated when experiencing specific emotions.
EEG is non-invasive method, which provides precise mea-
surements of electrical activity in the brain [9]. It has a high
temporal resolution, allowing to capture rapid changes in
brain activity of a user in real-time [10]. However, analyzing
EEG signals can be challenging due to noise interference
and limited spatial resolution. These signals are recorded
via multiple channels, which often introduces internal and
external noise. This noise complicates the recognition of
emotional responses.

In recent years, conventional machine learning and deep
learning based approaches have been applied to identify
emotions from the EEG signals [11]. These approaches have
explored spatio-temporal aspects [12], and fusion of EEG
with visual and audio modalities [13]. In machine learning
approaches, there are typically two stages: feature extraction
and classifier selection [12]. EEG features can be extracted
by signal processing techniques such as Fourier transform or
wavelet analysis, as well as statistical measures like mean,
variance, or entropy calculations [14], [15]. These extracted
features serve as inputs to the chosen classifier, which then
learns patterns and makes predictions [16]. On the other
hand, deep learning based approaches allow for the automatic
learning of feature representations from raw EEG signals. It
can capture complex relationships and dependencies within
the signal, leading to improved emotion identification [17].

In this regard, we propose a hybrid approach where
emotion classification is performed by integrating feature
representations obtained from machine learning and deep
learning-based classifiers. We compute the weighted sum
of these feature representations and then apply the argmax
operation to determine the emotion class with the highest
confidence level. Our empirical finding on EmoNeuroDB
dataset suggests that performing hybrid fusion leads to
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are then input into spectro-temporal and statistical encoders, which are responsible for learning relevant features. These encoders then outputs probabilities
for each emotion class. To make the final prediction, we calculate a weighted sum of these class probabilities and apply argmax operation to determine

the predicted emotion class.

improved emotion classification compared to using either
approach independently.

II. METHOD
A. Problem Formulation

We formulate emotion identification as a classification task
and the objective is to classify the EEG signals into one of
six distinct emotion classes.

B. Dataset

The EmoNeuroDB [18] dataset includes multi-channel
EEG recordings from 40 participants. During the recordings,
participants are presented with an avatar in a virtual reality
environment. The avatar displays six different emotions:
fear, joy, anger, sadness, disgust, and surprise as stimuli.
Participants are asked to mimic the avatar’s facial expressions
and their brain activity is recorded via DSI-24 wireless dry
electrode EEG headset. 40 participants, including 16 females,
with ages ranging from 19 to 57 years participated in the
study. Each recording lasted for 15 seconds and was sampled
at a rate of 300 Hz.

The dataset is split into three subject-independent subsets:
training, validation, and testing, with no overlap between
them. The training set contains 360 EEG recording samples
and validation and test sets have 180 samples each. Each
set has a distinct subjects, with 3 EEG recordings for each
emotion. The dataset is perfectly balanced for each class. For
more information please refer to the [18].

C. Feature Extraction

To extract meaningful features from EEG signals, we
first divide the EEG signal into ¢ (1-4 Hz), 6 (4-8 Hz),
« (8-12 Hz), § (12-30 Hz), and v (>30 Hz) bands via
applying a second-order Butterworth bandpass filter [19],
[20]. Afterwards, we apply spectro-temporal and statistical
encoders. Input to these encoders are topographic maps
and statistical features, respectively. The output from these
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Fig. 2. 3D-CNN architecture designed to extract latent features from the
topographic maps. Refer to Section II for details.

encoders are class-wise probabilities from the classification
algorithms.

1) Spectro-temporal Encoder: Spectro-temporal encoding
are generated in two stages: In first stage we generate
topographic maps, which captures both the spectral and
spatial information of the EEG signal [20]. These maps
are generated at 0.5-second intervals and have a resolution
of 64x64 pixels. Afterwards, we apply 3D-CNN to learn
latent features from the topographic maps. The architecture
of the 3D-CNN consists of three stacks of convolution with
a max-pooling layer, followed by two fully connected layers.
The output of this encoder comprises class-wise probabilities
extracted from the softmax layer of the 3D-CNN. Figure 2
illustrates the 3D-CNN architecture.

2) Statistical Encoder: Input to this encoder is statis-
tical features of the EEG signals. These feature includes
Permutation Entropy, Spectral Entropy, Singular Value De-
composition Entropy, Sample Entropy, Approximate Entropy,
Katz Fractal Dimension, Petrosian Fractal Dimension, and
Higuchi Fractal Dimension [21], [22]. After computing these
features, we apply following classification algorithms.

o Random Forest (RF) [23], is a ensemble of decision
trees, where each tree is trained on a randomly selected
subset of the training data. The final prediction is the
majority voting among individual trees.



TABLE I
COMPARISON OF CLASS-WISE ACCURACY ON THE VALIDATION SET FOR DIFFERENT ENCODERS.

Methods Fear Joy  Anger Sadness Disgust  Surprise \ Mean Accuracy
Baseline Method [18] 0.10 0.53 0.10 0.10 0.07 0.27 0.19
Spectro-temporal Encoder 0.10 0.10 0.10 0.43 0.27 0.07 0.18
SVM based Statistical Encoder 0.00 0.00 0.37 0.03 0.70 0.10 0.20
LDA based Statistical Encoder 030 0.20 0.27 0.47 0.10 0.20 0.26
RF based Statistical Encoder 0.33  0.17 0.4 0.23 0.13 0.17 0.24
RF based Statistical Encoder (Top 50% features) 0.10  0.17 0.43 0.57 0.13 0.17 0.26
Proposed Approach 033 043 0.23 0.20 0.33 0.10 0.27

o Linear Discriminant Analysis (LDA) [24], is a gen-
erative algorithm, which constructs a linear decision
boundary between classes in the feature space.

o Support Vector Machine (SVM) [25], is a discriminative
classifier, which finds the optimal decision boundary
such that there is maximal distance between decision
boundary and support vectors.

D. Classification Method

Once we obtain the class-wise probabilities from Spectro-
temporal Encoder and Statistical Encoder, we combine these
probabilities using a weighted sum. The argmax operation is
then applied to the weighted sum to predict the emotion class
(refer to Figure 1). We test various weight values, ranging
from 0.1 to 0.9, and report the results in Table I on optimal
weight value.

E. Model Training & Validation Procedure

When training the Spectro-temporal Encoder, we apply
Adam optimizer with a learning rate of 0.001 and categorical
cross-entropy for loss computation. We set the batch size to
32 and maximum number of epochs at 30.

While training the RF based Statistical Encoder, the top
50% of the relevant features are used to train similar RF en-
coder to achieve better performance. The RF based Encoder
has been trained using the following parameters: 50 trees,
gini criterion and a minimum of 2 samples required to split
a node.

To evaluate the classification performance, we apply 5-
fold cross-validation. Within each fold, we select the best-
performing model for the final evaluation. This selection
process helps us avoid choosing a model converged at poor
local minima [26]. The experiments are conducted on an
Nvidia A100 GPU, which is equipped with 40 GB of GPU
memory.

III. RESULTS & DISCUSSION
A. Overall Results

We observe that weighted sum of class-wise probabilities
from spectral and statistical encoders produces the best
results. While the baseline method achieves an average ac-
curacy of 0.19, our approach achieves 0.27 on the validation
set. On the test set, the baseline accuracy is at 0.19, whereas
our method achieves 0.24, which is 42.10% increase in class
prediction accuracy.

We compare different models via mean accuracy metric.
Table I displays the overall results of different encoder types.

1) While the spectro-temporal encoder has lower accu-
racy compared to the baseline method, its predictions
improves when combined with the RF based statistical
encoder.

The various statistical encoders tested have outper-
formed the baseline method. However, SVM and LDA
based statistical encoders are biased towards certain
emotions.

The proposed method, which combines spectro-
temporal and RF based statistical encodings with a
weighted approach, achieves the highest overall aver-
age accuracy.

2)

3)

B. Class-wise Results

For statistical encoder, we experiment with different clas-
sifiers. We observe that LDA based statistical encoder has
better overall accuracy. However its class-wise results are
more biased towards Sadness class (refer to Figure 3(c)).
We observe a similar trend with SVM based statistical
encoder, which is biased towards the Disgust class (refer
to Figure 3(b)).

In case of RF based statistical encoder, which is inferior to
LDA based statistical encoder in term of overall accuracy, we
observe that class-wise accuracy is better distributed. There
is less confusion among the classes, and it shows higher ac-
curacy in identifying Fear and Sadness class. However, many
instances of Joy are classified as Fear. Surprise remains the
least accurately classified emotion. We also observe that upon
selecting the top 50% of the features via Gini index, there
is an increase in accuracy (refer to Table I) and reduced
confusion among the classes (refer to Figure 3(e)).

Our proposed method, demonstrates an improvement in
both overall prediction accuracy and individual emotion
accuracies, notably on Joy, Anger and Sadness. However,
many of the Surprise instances are still misclassified as
Anger. Another noteworthy observation is that the individual
encoders tend to favour a particular emotion. Our proposed
fusion method maintains a better ratio across the various
classes.

Figure 3 shows class-wise accuracy. A significant amount
of the Surprise signals have been misclassified as Fear. This
can might be due to the spontaneity present in both emotions
which have led the features to appear relatively simpler.



TABLE I
THE PRECISION, RECALL, AND F1 SCORES (MACRO WEIGHTED) FOR DIFFERENT ENCODERS ON THE VALIDATION SET.

Methods Precision  Recall ~ F1-Score
Spectro-temporal Encoder 0.17 0.18 0.16
SVM based Statistical Encoder 0.15 0.20 0.14
LDA based Statistical Encoder 0.26 0.26 0.25
RF based Statistical Encoder 0.26 0.24 0.24
RF based Statistical Encoder (Top 50% features) 0.25 0.26 0.25
Proposed Approach 0.27 0.27 0.26
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C. Proposed Approach on Validation & Test Set

While comparing the proposed approach on validation
and test set, we observe some variations in the performance
across individual classes. There has not been much changes
in the Fear and Anger classes, but we have observed signif-
icant differences in accuracy for Joy, Disgust, and Surprise
class. Disgust performed very poor on the test set, while class
performed well and nullifying the effect. The performance
of Disgust class is notably poor on the test set, whereas
Surprise class performed well, effectively neutralizing the
overall impact. Table III presents a comparison of accuracies
between the validation and test sets. We additionally compute
precision, recall, and F1 scores for various encoders on the

tures). The Anger and Sadness classes demon- mis-classified as Anger.

Confusion matrices depicting the performance of different encoders on the validation set.

validation set. In Table II, we present the macro weighted
scores, revealing that our proposed method outperforms the
different encoders.

Furthermore, we observe performance variations between
the validation and test set (refer to Table III). The variation
may be due to the high inter-participant variability. As
validation and test set include non-overlapping participants
data.

IV. CONCLUSION

In this paper, we present a spectro-temporal and statistical
embedding fusion approach for the identification of emotions
from EEG signals. Emotions are elicited through a virtual
avatar presented to participants, and the identification task



TABLE III
CLASS-WISE RESULTS OF PROPOSED APPROACH.

Emotion Class Validation Set  Test Set
Fear 0.33 0.33
Joy 0.43 0.30
Anger 0.23 0.20
Sadness 0.20 0.30
Disgust 0.33 0.03
Surprise 0.10 0.30
Mean Accuracy 0.27 0.24

is framed as a classification problem. Our approach involves
calculating a weighted sum of prediction probabilities gener-
ated by spectro-temporal and statistical encoders, resulting in
a robust solution for emotion identification. As part of future
work, we propose incorporating data augmentation strategies,
especially synthetic EEG data generated via generative algo-
rithms [10] to improve the robustness and generalization. In
addition, we suggest to explore feature selection techniques
to minimize redundant features. This will help in improving
interpretability of the proposed approach.
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