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Abstract— This study focuses on detecting two-dimensional
(2D) gaze points in interactions between children both with
and without autism and adults. Within the scope of this
objective, a novel subset called ChildPlay-R has been created
based on the open-source ChildPlay dataset. This new dataset
includes explicitly the interactions of children with and without
autism with adults in similar uncontrolled environments and
relevant 2D gaze points. Moreover, the analyses using the
Modified Spatiotemporal Gaze Detection (M-STGD) model,
compared to the traditional Spatiotemporal Gaze Architecture
(STGA), reveal significant improvements in the Area Under the
Curve values and out-of-sample precision. These advancements
indicate the M-STGD model’s potential to provide a deeper
understanding of the social engagement patterns of children
with autism. This study contributes to the automatic detection
of 2D gaze points in social interactions and supports the social
development of children with autism.

I. INTRODUCTION

From the earliest moments of life, gaze behavior emerges
as a powerful and nonverbal form of communication, mark-
ing one of the fundamental elements of interactions [3].
From this early period, gaze behavior plays a significant
role in social interactions. Individuals with autism, however,
experience difficulties in social interactions compared to their
typically developing peers. These challenges are displayed
in less eye contact, atypical gaze patterns, and a reduced
response to their names by individuals with autism [4].

Eye contact is crucial in social interactions, signifying
attention, engagement, and interest. Consequently, the eval-
uation of social communication skills in children at risk for
developmental disorders has become critical through gaze
studies [8]. Therapeutic activities that seriously impact the
development of these social skills in children with autism
take a long time [4]. Nevertheless, the manual annotation and
evaluation of video recordings of these therapeutic activities
are time-consuming and require considerable effort. Despite
advancements in automatic gaze estimation from cameras
[9], [12], [16] and wearable camera-based predictions [8],
making this process more efficient and reducing the cost of
video coding remains a challenging problem. The primary
cause of this challenge lies in the scarcity of open-source
interaction datasets involving children with autism [2], [14],
[15]. Among these limited datasets, only one features gaze
target labels [2]. However, incorporating 3D-processed data
to protect participants’ privacy, this dataset adds an extra

layer of complexity to gaze studies. While crucial for main-
taining confidentiality, this approach significantly compli-
cates the analysis and interpretation of gaze data, presenting
additional hurdles for researchers in this field.

In response to this problem, this study introduces a
reduced version of the open-source ChildPlay dataset ti-
tled ChildPlay-R. This ChildPlay-R dataset contains fifteen
videos, five describing interactions between children with
autism and adults, and the remaining ten showing interactions
involving children without autism and adults. The availability
of such an immediately accessible dataset is expected to
accelerate interaction studies with children with autism.

Furthermore, this study proposes a modified version of the
STGA model, the M-STGD model. The STGA [9] and M-
STGD models are compared using the ChildPlay-R dataset
regarding interactions between children with and without
autism and adults.

II. RELATED WORK

In autism detection [13], [18] and therapy [4], [6], [10],
a notable increase has been observed in the successful
utilization of technological approaches that have garnered
positive feedback. Among these technologies, wearable cam-
eras, eye-tracking systems, cameras, and interactive robots
are prominent.

Wearable cameras provide datasets for behavioral analysis,
but their prolonged use can cause discomfort or distraction,
particularly in sensitive children with autism. These devices
may create a sense of pressure, inhibiting the children from
displaying their natural behaviors [5].

Eye-tracking systems [17], [18] are used in critical areas
such as eye contact and joint attention, which are pivotal
in autism. However, the requirement for children to hold a
fixed position can be challenging for children with autism
[5], [17].

Video cameras [9], [13], [10], are less restrictive than other
observed technologies and are highly effective in recording
the natural behaviors of children [16]. These cameras do not
require special hardware and do not exert additional pressure
on the children. However, they face challenges in usability
and generalizability [9], [16].

Robotic technology [1], [6], [10] offers interactive and
educational tools to enhance the social skills of children with
autism. With their programmable and predictable behaviors,
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robots facilitate children’s engagement in social interactions
and are increasingly used in robot-assisted therapy studies
[6], [10].

Technological tools are essential for improving our under-
standing and therapy of social interactions in children with
autism. These tools enable the detailed study of crucial as-
pects such as mutual gaze, joint attention, and the recognition
of emotional responses.

Mutual gaze [7], [11] involves two individuals making
eye contact. Children with autism often struggle with eye
contact, which poses challenges to their social development.
Research in this area focuses on improving their social skills
by enhancing their ability to engage in mutual gaze [5].

Joint attention [1], [6], [10] is the ability of two or more
individuals to focus their attention together on the same
point or object. This joint focus is another area that can be
particularly challenging for individuals with autism. Studies
using these technological tools aim to improve the ability
of children with autism to focus their attention on specific
objects or activities and thus improve their social interaction
potential.

Lastly, the method of attention target detection is em-
ployed to ascertain the focus points [9], [12], [16] of indi-
viduals, helping researchers and educators better understand
their interests and learning styles. This technique allows for
a deeper understanding of their engagement patterns by iden-
tifying where a participant’s visual attention is concentrated.
Such insights are invaluable for personalizing educational
content and therapeutic activities to align with the child’s
interests and learning needs, ultimately supporting more
effective interventions in autism therapy.

III. DATASET

This study utilized a reduced version of the ChildPlay
dataset [16] named ChildPlay-R to examine social interac-
tions between children (either with or without autism) and
adults. The ChildPlay dataset [16] consists of short video
clips labeled with rich gaze information that capture children
engaging in play and interacting with adults. This dataset
contains a selection of 401 video clips from 95 videos col-
lected from open-source videos from various environments,
such as therapy centers and kindergartens, via YouTube.
The ChildPlay dataset was annotated by seven annotators,
incorporating 2D gaze points and gaze labels. Gaze labels
were segregated into seven categories: inside-frame, outside-
frame, gaze-shift, occluded, eyes-closed, uncertain, and not-
annotated. Frames labeled as occluded, eyes-closed, uncer-
tain, and not-annotated were excluded from this study to
sharpen the focus on different gaze behaviors [16].

The reduced dataset used in this research contains data
that adheres to specific criteria: i) the interaction must involve
one child, and ii) the interaction should occur around a table.
These criteria were chosen to steer future research towards a
more controlled study, enabling a concentrated examination
of interactions and the clustering potential of the child’s focus
area. Under these criteria, 35 video clips extracted from 15
videos were selected for the reduced dataset. Of these videos,

five featured interactions with children with autism. Autism-
related information was explicitly indicated in the respective
videos, sourced from an autism center, or related to autism
studies. To the best of our knowledge, ChildPlay-R is the
only instantly accessible open-source dataset that includes
2D gaze points label specifically designed for studying
interactions between autistic children and adults, making it
an important resource for researchers.

A “subject-independent” approach has been adopted by
using leaving-one-actor-out method to enhance the general
applicability of the model. Considering that more than one
video can belong to the same child in the dataset, we picked
children who are represented with only one video for the
test set. This test set includes one video of a child with
autism and two videos of children without autism, allocating
20% of the video for testing and 80% for training. Given the
total number of frames, the videos of children with autism
contain 5706 frames, whereas those of children without
autism include 12532 frames. Consequently, in terms of the
total frame count, the test set represents 16% of the overall
frames.

Data augmentation techniques were also applied to in-
crease the dataset’s diversity and robustness. These tech-
niques, which include color-changing, head position jittering,
cropping, and flipping, were implemented randomly and
independently of each other 50% of the time [16]. These
color-changing operations were adjusted for brightness, con-
trast, and saturation. This strategy aimed to imitate a more
comprehensive visual scenario, expanding the dataset and
potentially enhancing the model’s predictive accuracy across
various environments.

IV. METHOD

A. Spatiotemporal Gaze Architecture

The Spatiotemporal Gaze Architecture, as cited in [9],
contains three main parts: the scene branch, the head condi-
tioning branch, and the recurrent attention prediction module.
The general structure of the STGA system is shown in Figure
1.

The Spatiotemporal Gaze Architecture uses a head convo-
lution process within the head conditioning branch, applying
it to the image cropped based on the head’s position. This
process combines with the binary image of the head position,
creating a head feature map.

The scene branch enhances the original image by adding
a layer containing the binary image. After being subjected to
the scene convolution process, this layered image results in
the scene feature map. This scene feature map is multiplied
by the attention map produced by the head conditioning
branch, highlighting areas in the image based on the head’s
position. The resulting weighted scene feature map combines
with the head feature map to enrich the features [9].

These enriched features are then processed through the
encoder module. The Spatiotemporal Gaze Architecture then
integrates temporal information using a convolutional long
short-term memory network within the recurrent attention
prediction module. The deconvolution module upscales the



Fig. 1: General structure of the STGA system [9]

extracted features to a full-size feature map. This full-size
feature map is then modulated with α to decide whether the
possible 2D gaze point is within the image frame. Eventually,
a heatmap predicting the attention target point in the image
is generated [9].

B. Modified Spatiotemporal Gaze Detection

This study introduces the Modified Spatiotemporal Gaze
Detection (M-STGD) system, an adaptation of the STGA
initially designed for adult 2D gaze point detection. The
modification aims to extend the application of the model to
determine 2D gaze points between children with autism and
children without autism.

The number of neurons in the second layer was reduced
from 128 to 64 to increase performance and efficiency in the
Decoder, the last stage of the M-STGD architecture. Such an
adjustment serves multiple purposes: it combats overfitting,
reduces the model’s complexity, enhances the accuracy of
image reconstruction, and increases overall learning effi-
ciency. Moreover, weights not associated with the batch
normalizations in the deconvolution layers were frozen to
ensure stability and prevent overfitting.

After detailed testing and optimization, the optimal hyper-
parameters were determined, comprising a learning rate of
5 × 10−6, a training duration set to 2 epochs, the Adam
optimizer for effective optimization, and a batch size of
16. This set of hyperparameters has been determined to
be the best for achieving superior model performance and
efficiency.

V. RESULT

This study analyzes how the children’s 2D gaze points
during interactions are assessed by applying two models: the
STGA and the M-STGD. The effectiveness of these models
was determined using a set of performance metrics, namely

the Area Under the Curve (AUC), the L2 distance, and the
Out-of-Frame Average Precision (AP) [9].

AUC is computed based on the classification of each cell
in the feature image as potential 2D gaze points. The ground
truth is a Gaussian confidence mask centered around the
2D gaze points annotated by labels. The heatmap illustrates
the prediction confidence score at different thresholds on the
ROC (Receiver Operating Characteristic). The heatmap loss,
Lh (loss), is calculated using the Mean Squared Error loss
(MSE) when the 2D gaze points are within the frame relative
to the ground truth. Furthermore, the binary cross-entropy
loss method is used to calculate the In-Frame loss, Lf , with
the overall training loss being a composite of both heatmap
and In-Frame losses [9]: L = wh · Lh + wf · Lf . The distance
performance metric evaluates the L2 distance between the
actual 2D gaze point and the estimated maximum pixels of
the heatmap [9]. Moreover, the AP for each image is r01ified
by comparing it to its actual value using a scalar α.

In this study, the STGA model, which is typically trained
on adult data, was tested on the ChildPlay-R dataset for
children with autism and without autism. For children with
autism, the STGA model achieved an AUC of 79% and
an L2 distance of 0.33. In contrast, for children without
autism, the model recorded an AUC of 87% and an L2

distance of 0.13. Subsequently, the weights from the STGA
model were transferred to the M-STGD model, which was
then trained on the ChildPlay-R dataset. This adjustment im-
proved accuracy in determining the 2D gaze points for both
groups of children. Specifically, for children with autism, the
AUC decreased to 81%, and the L2 distance was reduced
to 0.27. For children without autism, the AUC increased
to 90%, and the L2 distance experienced a slight increase
of 0.0041. The combined performance metrics for the 2D
gaze points detection across STGA and M-STGD models are
summarized in Table I, highlighting the comparative analysis



(a) Near-target prediction in child with autism (b) Near-target prediction in child without autism

(c) Off-target prediction in child with autism (d) Off-target prediction in child without autism

Fig. 2: Comparative analysis of 2D gaze points prediction in child with and without autism

for each group.

TABLE I: Combined Performance Metrics for 2D Gaze
Points Detection

Model Children w/ Autism Children w/o Autism
AUC↑ L2 D↓ AP↑ AUC↑ L2 D↓ AP↑

STGA 0.7931 0.334 0.9747 0.874 0.1368 0.9739
M-STGD 0.8143 0.2713 0.9756 0.9099 0.1409 0.9751

Figure 2 shows correct and incorrect predictions of the
M-STGD model in some sample scenes involving children
with and without autism interacting with adults. The output
of this model, which predicts the gaze target point of the
child, is a heat map. This heat map provides a representation
of where the child is looking in the image. A blue dot and
a blue box have been added to the image for clarity in the
demonstration. The blue dot represents the model’s predicted
attention target point and the blue box indicates the head
position of the individual whose gaze target point has been
predicted. Also, the individuals have been blurred to prevent
identification for anonymization.

VI. CONCLUSION
This study proposes a deep learning-based approach for

detecting the 2D gaze points during social interactions be-
tween children with and without autism and adults to provide
guiding information for developing effective intervention
methods for children with autism who have difficulties in

social interaction. For this purpose, using the ChildPlay
open-source dataset, a subset was created containing videos
of the child with and without autism playing and interacting
with one or more adults. This dataset was analyzed using
the STGA and the newly proposed M-STGD models. The
analysis showed that the M-STGD model outperformed
the STGA model regarding higher AUC values, improved
L2 distance outcomes, and increased out-of-frame average
precision values. These findings suggest that the M-STGD
model is more adapted to accurately analyzing interactions
across both groups of children. The results of this research
could contribute to a better understanding and support of
interactions with children with autism. Improvements made
in the M-STGD model may provide more accurate infor-
mation for applications such as educational and therapeutic
programs. In addition, this study emphasizes the advantage
of using technological tools to analyze social interactions by
detecting 2D gaze points.
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