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Abstract— This study proposes a lightweight facial expression
recognition (FER) framework for children that can be used
on resource-limited devices such as socially assistive robots
interacting with children in real world applications. In this
study, knowledge distillation (KD) and unstructured weight
pruning (UWP) method are used to achieve lightweight FER
models. Effect of joint usage of KD and UWP method on
FER is also evaluated by using a pruned teacher model within
the teacher-student training paradigm in knowledge distillation
method. Experiments are performed utilizing AffectNet, CK+
and CAFE datasets. LITE-FER achieved 89.69% and 77% in
CK+ and CAFE respectively in k-fold cross validation strategy.
LITE-FER only consists of 113.98K parameters (445.24 KB)
which makes the model resource-efficient. LITE-FER can reach
up to 173.82 FPS with TensorRT on GPU, and 30.09 FPS with
keras on CPU. LITE-FER revealed its maximum inference
performance in batch inference with 3213 FPS throughput.
Results showed that our proposed model (“LITE-FER”) results
in comparable accuracy, as well as computational and memory
efficiency. The proposed model is planned to be used in assistive
robotic systems for children in the future.

I. INTRODUCTION

Facial expressions of people give hints regarding
their emotional status, fatigue, engagement in conversa-
tion/interaction and so on. Therefore, developing an au-
tomatic FER algorithm has been an active research area.
Developed algorithms can be utilized for the aim of detecting
aforementioned states of people. In this study, we specifically
focus on recognizing emotions through facial expressions.
The proposed emotion recognition model will be used to
detect children emotions.

Proposed state-of-the-art algorithms in the FER domain
are mainly based on convolutional neural networks [4].
Mostly, to achieve state-of-the-art results, proposed deep
learning solutions consist of excessive number of parame-
ters which increases the computational load. To this end,
lightweight solutions are proposed in the literature by using
model compression algorithms. With the aim of resulting
in a lightweight neural network that does not require high
computational load and memory usage, effects of model
pruning [3], [29], [26], [9], [6], [38], knowledge distillation
(KD) [5], [15] and neural architecture search (NAS) [33], [8],
[17] methods are explored within this research area. Even
though there are proposed lightweight solutions for FER,
lightweight solutions are not thorougly studied in children
FER. In fact, to the best of our knowledge, there is only
a single study [3] that proposes lightweight solution by
utilizing weight pruning for efficient children FER.

This study presents novel contributions in the literature

from several key aspects. Firstly, we introduce the method-
ology of knowledge distillation (KD) in the child FER
domain which has not been tested previously to the best of
our knowledge. Secondly, effect of combining unstructured
weight pruning (UWP) and knowledge distillation (KD) is
explored. Experiments are performed with pruned teacher.
Lastly, we provide an open-source lightweight framework
for facial expression recognition of children to be used
in resource-limited devices. As an open source platform
1 offering ligthweight models for emotion recognition in
children, the system can be utilized directly as an assistive
service on resource-limited devices such as robots, embedded
or mobile devices for children such as child-robot interac-
tions studies, and support the researchers and technology
providers in this domain. Proposed approach is published
as TensorFlow models and TensorRT models which can be
utilized in embedded devices. Performance analysis showed
that the proposed lightweight model operates faster compared
to complex models on a laptop with i7-12700H and NVidia
RTX 3060. Together, these key points highlight the novel
and high-impact contributions that our research offers.

II. RELATED WORK

Many solutions have been proposed for the FER problem
for a while. In fact, initially, conventional image processing
algorithms are utilized to extract features related to human
face for emotion and facial landmark recognition [40]. With
the development and proven success of deep learning, hand-
crafted methods have been discontinued over time [4], even
though prior works have also proposed joint approaches that
combine hand-crafted and neural networks [27], [7]. To make
the neural network focus on significant parts of the face,
“attention” concept is utilized in prior works [39], [23].
Minaee et al. [23] integrated attention mechanism within a
spatial transformer network. Transfer learning is also widely
applied within this area to leverage the information already
learned from another domain. Many prior studies benefit
from transfer learning by proposing algorithms based on
pretrained algorithms (e.g. ResNet-50, VGG-16) [13], [16],
[11]. With utilizing the already learned low-level features
of pre-trained algorithms, high-level feature extraction of
the network can be adapted to the FER task by training
parameters of top-most layers [11].

Along with static image solutions for FER, video-based
solutions are also explored [24], [20], [12]. When using static

1https://github.com/erhanbicerr/LITE-FER
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images, spatial relation is taken into consideration. Moreover,
if a video (consecutive frames of static images) is being used,
temporal relation can also be explored. Studies in the video
domain mostly utilize both spatial and temporal (spatio-
temporal) features regarding input frames. Yet, not all of the
frames within a video consist of useful information. Using
attention mechanism, proposed algorithms become aware of
redundant frames to improve the performance [20], [12].

Even though FER has been an active research area for
quite an amount of time, FER studies for children and
infants are limited compared to the studies in adult faces.
FER should also be addressed in the children domain as
the existing solutions for adult FER do not directly apply
to children domain due to morphological differences of face
muscles [42]. Thus, researchers propose emotion recognition
algorithms that are specialized in children faces specifically
[30], [37], [32]. In fact, domain adaptation is employed to
improve the FER performance in children further than fine-
tuning [37]. There are also special cases within child FER
domain that needs thoroughly consideration: children with
special needs. As their facial expressions differentiate from
typically developed children, automatic FER needs to be
explored specifically for them [14].

Since state-of-the-art algorithms depend on high number
of parameters which require high computational power,
lightweight solutions have gained importance to achieve
efficient FER frameworks for resource limited devices. Re-
searchers propose lightweight FER models using different
approaches of model compression including model prun-
ing [3], [29], [26], [9], [6], [38], knowledge distillation
(KD) [5], [15] and neural architecture search (NAS) [33], [8],
[17]. Li et al. [17], addressed the inadaptability issue caused
by transfer learning from general classification networks into
FER and solved by using NAS while providing a lightweight
network. In NAS, a search space is defined to find the op-
timal neural network. Compared to other methods, defining
search space requires elaborate consideration whereas other
methods are simpler to apply. Cugu et al. employed teacher-
student methodology to provide efficient FER models using
Inception network as the teacher [5].

III. METHODOLOGY

The aim of this study is to propose an efficient FER
system to be used within resource-efficient devices such
as embedded devices, especially within social robots, and
mobile devices. To this end, UWP and KD methods are tested
to propose a robust lightweight FER network. Depthwise
separable convolutional networks are utilized to be able to
benefit from more convolution layers without increasing the
number of parameters greatly. Details of aforementioned
approaches are given below.

A. Unstructured Weight Pruning (UWP)

UWP approach is adopted to sparsify the weight matrix
of the FER model. With this approach, redundant weights
are removed by making the value of those weights zero.

Throughout the model training, after each step (after process-
ing each image batch), model weights are ordered according
to their magnitude, then according to specified sparsity rate
for the weight matrices, weights with least magnitudes are
replaced with weights with zero magnitude to fulfill the
sparsity requirement. This approach falls under the category
of unstructured pruning as it makes the weight matrices of
the model sparse by zeroing out unnecessary weights instead
of removing them [18]. Since neurons are still present after
the UWP, hardware and a framework that specialized in ac-
celerating sparse matrix computation is needed. For the sake
of achieving such feature, Nvidia’s TensorRT framework [2]
is used along with Ampere series graphics card (RTX 3060
Laptop GPU). Along with TensorRT, “tflite” module [1] of
tensorflow is tested to be able to deploy developed model into
mobile devices in future. “tflite” is specifically designated for
mobile devices.

B. Knowledge Distillation (KD)

KD is a neural network training technique that aims to
transfer knowledge from a complex network into a small
network [10]. Complex network in this training strategy is
called “teacher network”, and small network is called as
“student network” in the literature [5], [15]. “Distilling”
knowledge from teacher is achieved by incorporating two
objective functions in loss function: (1) Kullback-Leibler
divergence between the soft (scaled by temperature) softmax
outputs of the teacher and student; (2) cross entropy loss
between the hard softmax output and the ground truth. We
add a focal factor to cross entropy loss for label imbalance
by using focal loss. So, overall loss for student is calculated
as below:

LSL = α ∗LF(PS)+(1−α)∗LD(PS
′
||PT ),

where LF represents focal loss between outputs of student
network and ground truth, LD represents distillation loss
between student and teacher outputs. In loss arguments, PS

′

and PT denotes softened probability distribution output of
student and teacher network respectively, while PS represents
hard softmax output of student network. LD is computed
using Kullback-Leiber divergence:
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where τ denotes temperature, m denotes number of classes.
Temperature is applied to scale the loss function as suggested
in [10], where usage of KD in neural networks is initially in-
troduced. Softened probability distribution is achieved using
temperature (τ) hyperparameter. Below, probability distribu-
tion computation is given for both teacher and student:
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where X and Y refers to logits of student and teacher
networks respectively.



Focal Loss [19] is used to take label imbalance into
account by weighting each label inversely as their occur-
rence. Instead of balancing the data with augmenting and
populating, this approach is pursued to make the model
comparison with literature fair enough, since previous works
using lightweight solutions did not populate the data. Focal
loss is calculated as below:

LF(PS) = α ∗ (1−PS)γ ∗LCE(PS),

where α is weighting factor for each class to deal with class
imbalance, γ is utilized to make the model focus more on
challenging samples instead of easy ones.

C. Depthwise Separable Convolutions for Efficient Deep
Neural Networks

Instead of using standard convolutional layers, using
depthwise separable convolutions is more advantageous in
terms of number of parameters and the depth of the network.
Despite regular convolutional layer, convolution operation
is split into two parts as depthwise convolution and point-
wise convolution. In depthwise convolution, convolution is
applied to each channel separately, and resulting matrices
are concatenated. Then, pointwise convolution takes place
by applying 1x1 kernels to increase the resulting channel
size. This variant of convolutional layer is mainly used in
efficient networks. MobileNet also consist of this type of
convolutional layers to preserve the computational efficiency
while number of layers increases.

IV. EXPERIMENTS

A. Datasets

AffectNet: AffectNet dataset [25] is used for UWP anal-
ysis, since it is widely used in the literature and it is an
in-the-wild dataset. AffectNet images are crawled from the
Internet. The dataset presents more challenge than posed
facial expression dataset due to uncontrolled environment.
A portion of the dataset is annotated by human experts
which includes 287651 training images and 3500 test images.
Emotion annotations are happiness, surprised, sad, fear,
anger, neutral and contemptuous. Also, there are arousal
and valence annotations, yet the scope of this paper does
not include continuous domain, so only emotion labels are
used. Contemptuous emotion is removed as many samples
are wrongly annotated as stated in a previous study [41].

CK+: In contrast with AffectNet, CK+ [22] dataset con-
tains images captured in a controlled environment. The
dataset consists of image sequences captured second by
second. First frame represents the neutral state of the subject,
while the last frame represents the peak state of the expressed
emotion. There are 7+1 (neutral) emotions captured as hap-
piness, surprised, sad, fear, anger, neutral and contemptuous.
There are 123 subjects and 592 image sequences in total.
Contemptuous emotions are not used as the used child
dataset, CAFE [21], do not include contemptuous emotion.

CAFE: CAFE [21] dataset contains posed images of
children with age of 2 to 8 years. Each child is expected
to express an emotion out of six basic emotions as sadness,

happiness, surprise, anger, disgust and fear (and neutral
state). Children express emotions both with their mouths
open and closed. There are total of 1192 image samples.

B. Weight Pruning Analyses with AffectNet

One of the challenges that AffectNet dataset presents is
label imbalance. Emotion frequencies highly differ from one
label to another. Happiness and neutral expressions dominate
other annotations by far. So, to overcome this distribution
imbalance, downsampling is applied on happiness, neutral,
sadness and anger, while disgust and fear samples are
oversampled (surprise remain same in size). Resulting subset
consist of 11409 happiness, 11409 neutral, 12729 sadness,
12441 anger, 14090 surprise, 12756 fear, 11409 disgust
samples which results in 86241 images. This approach is
adopted by [6] and named as CopyDB as it oversamples the
images by “copying” them. Similar oversampling approaches
are pursued in several more studies to make the AffectNet
dataset balanced [41], [35], [34].

VGG-Face model [28] is used throughout the experiments,
since it is pre-trained on a face recognition, which is a similar
domain. To fine-tune the VGG-Face model for FER task, the
model should adapt its weights to generate relevant high-
level features according to the FER task by learning with
the AffectNet dataset. Since first convolutional layers extract
low level features such as edges and shapes, enabling last
layers to be updated is reasonable. To decide whether to
update last convolutional block or only last dense layer,
experiments are made on CopyDB with using SGD and
Adam optimizers. Results showed that when last convolu-
tional layer block is used, validation accuracy can surpass
61% which outperforms only updating last classifier layer.
Thus, in following experiments, last convolution block is
updated (Fig. 1). Also, since SGD outperforms Adam when
convolution layers are enabled to update, SGD is utilized
in AffectNet experiments. Comparison of results can be
seen in Table I. The best performing model will be used
as a baseline model in experiments for CK+ and CAFE,
namely Affect-FER. Yet, Affect-FER performed better with
Adam in CK+ and CAFE datasets, as explained in upcoming
sections. Initially, pruning operation ensure that 50% of

TABLE I
EXPERIMENT OF WEIGHT FREEZING ON COPYDB WITH VGG-FACE

Models Optimizer Learning
Rate

Test
Accuracy

Last Layer SGD 1e-3 53%
Last Layer Adam 1e-3 56%
Last Conv Block SGD 1e-3 61%
Last Conv Block Adam 1e-3 57%
Last Conv
Block+1024FC

SGD 1e-3 60%

Last Conv
Block+1024FC

Adam 1e-3 54%

the weights are removed, and when the pruning operation
has ended, 80% of the weights are removed based on their
values. Thus, sparsity rate gradually increases throughout
the model training. As it can be seen in Table II, test



Fig. 1. VGG-Face Model. Layers with dashed lines are enabled for weight
updating.

accuracy of the resulting models are comparable to each
other, which indicates that UWP method does not affect
the model performance negatively. In fact, the highest test
accuracy is achieved by pruned model in 10−4 learning rate.
Most balanced result is achieved by pruned model with 10−5

learning rate as train accuracy is the least among others. For
experiments with pruned teacher in CK+, teacher will be
fine-tuned using the pruned model with 10−5 learning rate,
namely Affect-FER-P.

TABLE II
EXPERIMENT OF PRUNING ON COPYDB

Prune Learning
Rate

Train
Accuracy

Test
Accuracy

✓ 1e-4 71.28% 61.06%
× 1e-4 69.23% 60.91%
✓ 1e-5 65.34% 59.37%
× 1e-5 71.7% 60%

1) Storage Efficiency Analysis with AffectNet: Since prun-
ing zeroes out redundant weights (setting their magnitude of
redundant weights as zero), weights become sparser and the
model can be compressed. Thus, models become resource
efficient regarding the storage size. After applying the ten-
sorflow strip pruning module and completing the training
with pruning, the model is further compressed using gzip.
The strip pruning module is required since it removes every
variable that pruning uses just during the training phase.
Pruning makes the model sparse, hence it is anticipated
that it will be compressed more than the model without
pruning. Model is changed into a “tflite” model after gzip
compression. The model size is then further reduced after
being quantized. Pruning reduced the zipped model size from
55 MB into 17 MB. Approximately, 70% of the model size
is reduced while keeping the accuracy preserved.

C. Fine-tuning on CK+ Dataset

In KD, teacher network’s weights are not updated, only
student network’s weights are learned throughout the train-
ing. Therefore, to have a robust teacher network, VGG-
Face is used which is pre-trained on AffectNet dataset to

perform FER during our UWP analyses. This choice brings
several advantages in the developing of teacher network.
Firstly, since the transferred domain is the same, the model
would be converging faster than using a model that is pre-
trained on another task. Also, datasets that are used in
our KD experiments do not include many samples as in
AffectNet dataset, thus over-fitting problem may arise if
several top-level layers are enabled to update their weights
during training. On the other hand, if only the classifier layer
is enabled, model capability may not be enough to provide
considerable performance if the model is not pre-trained in
FER. By using the FER model trained in large dataset such as
AffectNet, addressed challenges are overcome. In this regard,
Affect-FER and Affect-FER-P are utilized.

Affect-FER is trained using Adam optimizer with learning
rate as 10−4 is used. The model is set to be trained for 300
epochs. Yet, early stopping technique is used to determinate
the training early if the validation loss does not improve for
50 epochs. Similarly, to prevent the model from overfitting,
learning rate is diminished by a factor of 0.1 if validation
loss does not decrease for 20 epochs. Ultimately, the model
with the best validation accuracy is saved on epoch basis.
The experiments showed that models have converged before
100 epochs, so for pruning experiments, model is trained
for 100 epochs to accelerate training (both validation loss
and accuracy is tested for model checkpoint in pruning, and
results with minimum validation loss is given as it performed
better in knowledge distillation).

Similarly with the previous studies [5], [17], [31] that
utilized CK+, 10-fold cross validation is performed to report
the model performance. Also, following the same approach
as prior studies to preserve the comparability, last 3 frames
of a facial expression sequence are utilized as “peak” frames,
while the first frame is used to be utilized as “neutral”
expressions.

Two different type of approaches are tested in 10-fold
cross validation as subject-independent and randomly split
folds. When preparing subject-independent folds, it is en-
sured that images belong to a single subject are not present in
both training and validation folds. With such cross-validation
strategy, it is aimed to evaluate the accuracy of learned
patterns by the model regardless of differences in faces of
individuals. In randomly split folds, there is no constraint
as the former approach, thus a subject may appear in both
training and validation fold. The most apparent downside of
this approach is the pleasing results may hinder the model’s
habit of memorizing individual faces which diminishes the
generalization capability of the model (i.e. instead of learning
a general pattern regarding emotions, patterns belong to
subjects may be memorized and the model may not perform
reportedly good in new unseen samples). This approach can
be utilized to validate the model’s structure by measuring its
capability to learn a pattern. For the teacher model in the
KD architecture, best performing model out of the subject-
independent strategy is used (Affect-FER). For the “pruned
teacher” scenario, Affect-FER-P is further fine-tuned in the
subject-independent dataset.



TABLE III
10-FOLD CK+ FINE-TUNING RESULTS (S.I: SUBJECT-INDEPENDENT,

R.S: RANDOM SPLIT)

Pruned Strategy Accuracy F1 Precision Recall
× S.I 96.89±2.6% 95.75±4.4% 97.18 95.14
✓ S.I 95.29±2.2% 91.53±3.9% 94.46 90.52
× R.S 99.61±0.4% 99.71±0.4% 99.85 99.59

Table III shows the detailed evaluation results of both
subject-independent and random split strategies with accu-
racy and F1 metrics. Pruned networks used Affect-FER-P as
baseline model, while without pruning models used Affect-
FER model as baseline. Results reveal that the Affect-FER
model is capable enough to achieve nearly 100% in random
split 10-fold cross validation strategy. Also, it can be seen
that the degree of accuracy decline in subject-independent
is negligible. UWP results in comparable scores compared
to networks without pruning. Yet, F1 score of the pruned
networks are slightly less than others in average.

The difference in deviation between two different cross-
validation strategies is evident as can be seen from the Ta-
ble III. Subject-independent cross validation results tend
to fluctuate due to varied train-validation splits in terms
of label distribution and expressions of subjects. Several
subjects express emotions different from the most of the
other subjects which causes the model to fail to detect the
expressed emotion as the extracted feature vector is distant
from the learned pattern for the emotion. An example of
this incident can be observed in Fig. 2. Most representative
facial action unit constituents of the anger emotion are
lowering the brows (Brow lowerer - AU4), tightening eye
lid (Lid tightener - AU7) and tightening lips (Lip tightener
- AU23). Lid tightener plays significant role in expressing
anger emotion [36]. In left upper image within Fig. 2, subject
only tightens her lips to express anger emotion, while lid
tightening and brow lowering are not fully performed. In the
left lower image, the subject lowers his brows in addition to
lip tightening which lead the model to increase the probabil-
ity given to anger emotion. Yet, without the expressive lid
tightening, our model is unable to detect the anger emotion.
On the right side, three aforementioned action units are
performed, and the model can detect the anger emotion.
Conclusively, this shows the expression variance between the
subjects, which causes relevantly higher standard deviation
in subject-independent strategy compared to random split
strategy.

To achieve such performance in subject-independent, on-
the-fly data augmentation is utilized. Within the data aug-
mentation techniques, rotation, shearing, shifting, flipping
are utilized as the pose can differ, but more importantly
brightness modifier is utilized since the main visual variation
between images in the CK+ is the brightness difference.
Whole configuration is listed in Table IV. Data augmentation
is only applied to the training batches during training, and
the total number of samples is not changed as the augmented
samples are replaced with the original ones. This act is

done intentionally to preserve the comparability of the model
with literature by keeping the total number of samples the
same. Trained networks for subject-independent strategy are
utilized as teacher networks in the knowledge distillation.

Fig. 2. Visual analysis of falsely predicted images

TABLE IV
DATA AUGMENTATION TECHNIQUES

Technique Degree/Range
Rotation -20,+20
Width Shift Range 0.2
Height Shift Range 0.2
Shear Range 0.1
Brightness Range [0.5,1.5]
Zoom Range 0.1
Horizontal Flip ✓

D. Knowledge-Distillation on CK+ Dataset

A 10 set of teacher models are selected out of best per-
forming Affect-FER cross validation experiments. Average
accuracy and standard deviation of those 10 models are
reported in Table III. Since subject-independent strategy
is followed in all further experiments, models trained with
subject-independent strategy is used. For “pruned teacher”
scenario, pruned networks are utilized as teacher networks.
This model will be utilized to distill knowledge to a more
shallow and lightweight neural network, as described in the
methodology section.

For the student network, two network architectures are
proposed: LITEFER-V1 and LITEFER-V2. LITEFER-V1 is
designed to be similar in a sense with MicroExpNet [5],
yet it is more lightweight which results in 18.9K (74.09
KB) parameters. Even though the end goal is to propose
lightweight models, accuracy of the models are significant
as the models should have adequate capability to result in
considerable FER performance. Architectural details of the
LITEFER-V1 are given in Table V. Each Conv2D block
is followed by a batch normalization layer and ReLU ac-
tivation function. Flatten operation is performed after the
maximum pooling operation. ReLU is utilized after the first
fully connected layer. Padding is performed to preserve the
input shape before the convolutions. Along with additional
differences to the architecture compared to MicroExpNet



[5], dropout layer is included as shallow network can easily
overfit and become biased towards a class, especially in
imbalanced class scenarios like in our case.

In addition to the LITEFER-V1, a more balanced network
is proposed regarding considerably low complexity and high
capability, named as LITEFER-V2. In this model, instead of
standard convolutions, depthwise separable convolutions are
utilized. This technique is suited well for a robust lightweight
model which has both high capability and considerably small
number of parameters. LITEFER-V2 model architecture is
visualized in Fig. 3 with layer details as caption. After each
depthwise separable convolution block; batch normalization,
max pooling with 2x2 shape and 2 stride followed by
ReLU activation is performed. Here the depthwise separable
convolution block includes a single depth wise convolution
and a standard convolution as illustrated in the methodology
section. As can be seen from the architecture, with the
benefit of using depthwise separable convolutions, the model
architecture can contain four convolution blocks without
increasing the parameter number dramatically. Different from
LITEFER-V1, no paddings are performed to preserve the
input shape in convolutions which results in decreased size of
convolution output in order to decrease parameters in further
layers and compensate the computational load of more deep
network. This model contains 113.98K (445.24KB) parame-
ters.

TABLE V
ARCHITECTURE DETAILS OF LITEFER-V1

LITEFER-V1
Layer Filter Shape,Stride
Conv2D 4x4x32,4
Conv2D 3x3x16,4
MaxPool2D 2x2,2
Dense 16
Dropout (0.5) -
Dense 7

Proposed variants of LITEFER models are trained within
KD training scheme for 600 epochs with using Adam
(early stopping with 100 epochs). Best performing results
are achieved with 10−4 and 10−5 for LITEFER-V1 and
LITEFER-V2 respectively. For all LITEFER model variants,
hyperparameter optimization is performed with alpha and
temperature values as 0.3, 0.4 and 3, 10 respectively. Best
performing learning rate for each variant is decided on
iterative preliminary experiments to solely focus on hyperpa-
rameter search of alpha and temperature. Comparative results
are given in Table VI. As can be seen from the Table VI,
LITEFER-V2 (L-V2) outperforms the other variant of the
model both in accuracy and especially F1 which is critical
metric for the task, since the CK+ is an imbalanced data.
There is no meaningful correlation between accuracy and
temperature values as previously reported [5]. LITEFER-V2
performed best when alpha value is 0.3 and temperature is
3 while LITEFER-V1 (L-V1) performed its best when alpha
is 0.4 and temperature is 3. “Pruned teacher” scenario is
also tested using LITEFER-V2 with alpha value as 0.3 and

temperature as 3. Resulting student model achieved 87.43%
accuracy and 78.24% F1 score. Since pruned teacher did not
improve performance, further analyses were performed by
using the teacher network without pruning. Also, pruning
is omitted in CAFE experiments. This can be related with
high sparsity rate that last convolutional layers have. For
convenience, LITEFER-V2 is named as LITEFER.

Fig. 3. Visual representation of LITEFER-V2 architecture: 1st Conv:
7x7x32, 2nd Conv: 9x9x64, 3rd Conv: 3x3x32, 4th Conv: 5x5x64, Max-
Pool2D: (2,2) with 2 stride, 1st Dense: 16 Neurons, 2nd Dense: 7 Neurons

Fig. 4. GradCAM analysis of samples correctly classified by LITEFER
(among every pair of face images; left one is the output of the teacher
model, and right one is the output of the LITEFER)

GradCAM is utilized to visualize facial regions that LITE-
FER and teacher model focuses. GradCAM heatmaps and
predictions are visualized in Fig. 4 and Fig. 5. As can be
seen from Fig. 4, even though predicted labels are same,
GradCAM heatmaps are not identical between LITEFER and
teacher model. Instead of focusing on a subregion of the
face, LITEFER scatters region of interest by focusing on
diverse and smaller regions. This outcome can be explained
by the number of parameters that LITEFER has. LITEFER
aims to classify 7 different emotion with small number of
parameters which would lead LITEFER to capture broader
patterns to represent the general distribution of the data. On
the other hand, this scattered region of interests (ROIs) may
reveal interesting patterns that even ground truth does not
provide. LITEFER predicts surprise emotion in the upper
left image pair in Fig. 5 by focusing on eyebrows which
is not focused by teacher model. Although ground truth



is neutral, subject appears as surprised in this image. Yet,
due to the same tendency of scattering focus, LITEFER
misclassified the happy sample as fear even though the
mouth region is focused. ROIs around eyebrows lead the
model to portray the subject as she raises her eyebrows. In
this sample, teacher model fails also since patterns around
mouth regions could not be captured. Overall, this attribute
of capturing broad patterns in the lightweight model can lead
to false predictions, although model sometimes benefit from
this attribute. To improve the robustness of the lightweight
models, labels can be categorized as positive negative neutral
to match the broad patterns in future studies.

Fig. 5. GradCam analysis of samples misclassified by LITEFER (among
every pair of face images; left one is the output of the teacher model, and
right one is the output of the LITEFER)

TABLE VI
COMPARATIVE RESULTS OF LITEFER VARIANT MODELS (L-V1:

LITEFER-V1, L-V2: LITEFER-V2, TEMP: TEMPERATURE, ACC:
ACCURACY, PREC: PRECISION, REC: RECALL)

Model Alpha Temp. Acc. F1 Prec. Rec.
L-V1 0.3 10 81.69% 67.82% 73.39% 68.01%
L-V1 0.3 3 81.66% 68.23% 73.82% 68.22%
L-V1 0.4 3 82.49% 71.91% 78.46% 71.18%
L-V1 0.4 10 81.07% 67.93% 73.90% 68.12%
L-V2 0.3 10 88.88% 81.25% 87.41% 80.94%
L-V2 0.3 3 89.69% 82.56% 87.64% 81.99%
L-V2 0.4 3 88.78% 80.74% 86.31% 80.09%
L-V2 0.4 10 89.34% 81.18% 86.38% 80.59%

Our best performing LITEFER model on CK+ dataset
is compared with state-of-the-art studies which propose
lightweight solutions for this dataset. As can be seen from
the Table VII, our model is the most lightweight model after
MicroExpNet [5]. Yet, our LITEFER model compensates
this difference with the accuracy near 90%. Auto-FERNET
model [17] excels in achieves superior accuracy in CK+
using neural architecture search (NAS). Since NAS can take
excessive amount of time to build a robust search space, we
do not opt for that approach as our aim is to only validate
the student network architecture, on commonly used adult
facial expression dataset, that would be developed further
for children facial expressions.

E. Fine-tuning on CAFE Dataset

In order to develop a lightweight FER model special-
ized for children, Affect-FER is further fine-tuned with
CAFE [21]. The fine-tuned model is used as the teacher

TABLE VII
COMPARATIVE RESULTS OF LITEFER MODELS WITH PREVIOUS

STUDIES ON CK+ DATASET

Model Model Size Compression Classes Accuracy
LITEFER 445.24KB Know. Dist. 7 89.69%
[31] 5.70MB UWP 8 99.68%
[5] 65K Know. Dist. 8 81.66%
[17] 2.1MB NAS 7 98.89%

model in the KD training scheme for CAFE dataset. In fine-
tuning, model is trained for 100 epochs, as model converges
before 100 epochs in experiments with CK+. Training with
CAFE also revealed that the model converges before 100
epochs. Early stopping approach is similar, but stopping cri-
teria is reduced to 30 epochs. On-the-fly data augmentation is
used as in CK+ dataset showed in Table IV. Resulting teacher
model achieved 89.86%±0.1% accuracy and 88.46%±0.5%
F1 score. Compared to prior works teacher network achieved
comparable score. Simões et al. [32] adapted ConvNeXt
model to CAFE dataset, yet number of parameters is not
provided in the study [32]. Thus, least number of parameters
for that family is used within the table.

TABLE VIII
COMPARATIVE RESULTS OF CAFE DATASET

Model Model Size Accuracy F1
LITEFER 113.98K (445.24KB) 77% 74.2%
Our Teacher 14.89M (56.80MB) 89.86% 88.46%
[3] 1.27M - 61.34%
[32] 29M 85.92% -

F. Knowledge-Distillation on CAFE Dataset

Teacher model is not pruned as there is not any strong
indication towards accuracy improvement in CK+ experi-
ments. To facilitate the KD process, student model’s weights
are initialized with using the best performing student model
within the experiments with the CK+ dataset. Best perform-
ing LITEFER, in CK+ experiments, is achieved with alpha
and temperature as 0.3 and 3 respectively. Out of 10 saved
models (i.e. since the experiment is 10-fold CV), the one
with the most label balanced validation set is selected for
weight initialization to improve the generalizability of the
model for child facial expression adaptation. Adam is used
with 10−5 learning rate as 10−4 learning rate lead model to
overfit the training data. The resulting model achieved 77.1%
accuracy and 74.2% F1 score.

The confusion matrix of LITEFER model is shown
in Fig. 6. It can be seen that most misclassified classes
are angry, sad and disgust. Angry is mostly misclassified
as disgust emotion (32%). Disgust is also mostly classified
as angry emotion (25%). This result can be understandable
as both class represents negative emotions and expressions
can be similar. Sad emotion, on the other hand, is mostly
misclassified as neutral emotion. This can be due to the fact
that neutral state of several subjects may also be inferred as
sad emotional state. Since CAFE dataset providers do not
allow for image publishing, samples are not provided.



There is only a single study [3] that proposes lightweight
FER model for children by using weight pruning. Details
of pruning type is not provided in the study (i.e. whether
pruning is performed on filters or individual weights). They
achieve 61.34% with the smallest model, also shown in
Table VIII. It should be noted that the model they proposed
were not trained in CAFE dataset, yet only tested on CAFE.

Fig. 6. Confusion matrix of LITEFER on CAFE dataset

G. Inference Speed Analysis

Inference speed of the proposed model LITEFER is mea-
sured and compared with complex teacher model in both
standard keras (.h5) and TensorRT format. For standard
keras format, both CPU and GPU performances are given
in Table IX. This latency evaluation is measured on average
of 100 iterations of single image prediction. As can be seen
from the Table IX, LITEFER outperforms complex teacher
network regarding inference latency and throughput. Results
also shows that LITEFER operates faster on CPU compared
to GPU when used in keras format. This can be explained
due to less computations needed to perform inference with
LITEFER along with being unable to exploit parellelism
provided by GPU in iterative prediction of single image. It
can be clearly seen that TensorRT optimizes neural networks
such that inference becomes faster. Still, LITEFER results in
nearly processes 17 frames more than the teacher network.

TABLE IX
INFERENCE SPEED OF THE MODELS USING SINGLE IMAGE PREDICTION

Model Device Format Latency Throughput
LITEFER GPU Keras 37 msec 26.82 FPS
Our Teacher GPU Keras 47 msec 21.13 FPS
LITEFER CPU Keras 33 msec 30.09 FPS
Our Teacher CPU Keras 96.3 msec 10.39 FPS
LITEFER GPU TensorRT 5.8 msec 173.82 FPS
Our Teacher GPU TensorRT 6.4 msec 156 FPS

Along with single image prediction, to reveal the maxi-
mum speed performance of the LITEFER through TensorRT,
inference speed is also measured with batch predictions
using data loaders. As can be seen from Table X, LITEFER
outperforms teacher also in batch prediction performance.
Single batch consisted of 128 images in this evaluation.

Average throughput denotes number of images predicted in
a second.

TABLE X
INFERENCE SPEED OF THE MODELS USING BATCH PREDICTION

Model Device Format Batch Latency Throughput
LITEFER GPU TensorRT 10 msec 3213 FPS
Our Teacher GPU TensorRT 106.2 msec 301 FPS

V. CONCLUSION

In this study, KD and UWP methods are used to achieve
lightweight FER models. It has been shown that with using
UWP method, FER models can eliminate redundant individ-
ual weights. In both AffectNet and CK+ datasets, the model
achieved nearly 80% sparsity rate in topmost convolution
and dense layers with preserving the accuracy. Since this
approach does not directly remove the parameters from the
network, computational load stays the same. To improve the
inference efficiency along with storage efficiency (i.e. pruned
FER models are compressed better), GPU should have the
accelerated sparse-matrix computation feature and pruning
should be done in structured manner.

KD approach is utilized to directly acquire a smaller
model by transferring knowledge from a complex model.
Focal loss is integrated within the general loss to improve
robustness towards label imbalance. Two variants of FER
model are proposed. LITEFER-V2 outperformed LITEFER-
V1 by leveraging the depthwise separable convolution layers.
LITE-FER achieved 89.69% and 77% in CK+ and CAFE
respectively in k-fold cross validation strategy. LITE-FER
only consists of 113.98K parameters (445.24 KB) which
makes the model resource-efficient.

The effect of joint usage of KD and UWP method on FER
is also evaluated by using a pruned teacher model within
the teacher-student training paradigm in KD method. The
motivation of this approach is to avoid the distillation of
overlearned patterns from the teacher model to the student.
However, pruned teacher scenario could not improve the
existing LITEFER result, possibly due to the high sparsity
rate. Thus, we preferred not to use this approach in children
FER experiments.

Chiefly, results showed that among previously proposed
lightweight models in the literature, our proposed model
(“LITE-FER”) results in comparable accuracy, as well as
computational and memory efficiency. Proposed LITE-FER
model can be implemented in resource-limited devices. In
future, proposed model can be used in child-robot interac-
tions or child-computer interactions. With this way, subtle
expressions of children that cannot be detected by observers
can be detected and behavioral relations can be extracted
from the subtle reaction of the children. This model es-
pecially would be helpful towards indicating mood of the
children with special needs during a therapeutical sessions.
To this end, this study can be extended to adapt the model
towards children with special needs such as autism spectrum
disorder.
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